1.1 제곱근의 뜻

소단원 평가(기초) 정답 및 풀이

1
$$x^2 = 5$$

2 a
$$x^2 = 9$$

3 E
$$x^2 = 25$$

4 E
$$x^2 = 0$$

7 🗈
$$\pm \frac{1}{6}$$

$$9 \equiv \pm \sqrt{5}$$

11 s
$$\pm \sqrt{11}$$

$$13 \equiv \pm \sqrt{7}$$

14 E
$$-\sqrt{3}$$

$$15 \equiv \sqrt{4}$$

$$16$$
 e $\sqrt{15}$

20 E
$$-\frac{2}{5}$$

1.1 제곱근의 뜻

소단원 평가(기본) 정답 및 풀이

1 **g** 5

3의 제곱근 $a \Leftrightarrow$ 어떤 수 a를 제곱하여 3이 되는 수 즉, $a^2=3$ 이다.

2 章 ④

④ $(-5)^2 = 25$, 25의 제곱근은 ±5이다.

3 달 ④

- ① $\sqrt{16} = \sqrt{4^2} = 4$ 이다.
- ② $\sqrt{4}=2$ 의 제곱근은 $\pm\sqrt{2}$ 이다.
- ③ 양수 a의 제곱근은 $\pm \sqrt{a}$ 이다.
- ⑤ 0의 제곱근은 0이다.

4 E ③

- L. 16의 제곱근은 ±4이다.
- C. 1의 제곱근은 ±1의 두 개이다.

5 章 ⑤

⑤ $\sqrt{9}=3$ 이므로 3의 제곱근을 x라 하면 $x^2=3$ $\therefore x=\pm\sqrt{3}$

6 **t** 1

16의 제곱근은 ± 4 , 음의 제곱근 a=-4 $\sqrt{81}=9$ 의 제곱근은 ± 3 , 양의 제곱근을 b=3 $\therefore a-b=(-4)-3=-7$

7日④

④ $0.4 = \frac{4}{10} = \frac{2}{5}$ 의 제곱근은 $\pm \sqrt{\frac{2}{5}} = \pm \frac{\sqrt{10}}{5}$

8 E (3)

정사각형의 한 변의 길이는 넓이의 양의 제곱근과 같 으므로

 $\neg. \sqrt{50} \qquad \qquad \bot. \sqrt{12} \qquad \qquad \sqsubseteq. 6$

ㄹ. $\sqrt{0.1}$ ㅁ. 3

따라서 근호 없이 나타낼 수 있는 것은 ㄷ, ㅁ이다.

9 ■ 0.9

$$\sqrt{0.81} = \sqrt{(0.9)^2} = 0.9$$

10 달 ④

$$4 \pm \sqrt{\frac{4}{49}} = \pm \sqrt{\left(\frac{2}{7}\right)^2} = \pm \frac{2}{7}$$

1.1 제곱근의 뜻

소단원 평가(발전) 정답 및 풀이

1 **t** 2

제곱근 a^2 이 9이므로 $\sqrt{a^2}=9$

- $a^2 = 9^2 = 81$
- $\therefore a = \pm \sqrt{81} = \pm 9$

2 a $\sqrt{35}$

주어진 삼각형의 넓이는

$$\frac{1}{2} \times 10 \times 7 = 35$$

따라서 이 삼각형과 넓이가 같은 정사각형의 한 변의 길이는 $\sqrt{35}$ 이다.

3 a 3, 5

- $\sqrt[3]{\frac{36}{49}} = \frac{6}{7}$
- ⑤ $\sqrt{16} = 4$ 를 2배하면 $8 = \sqrt{64}$

4 E ②

$$A = \sqrt{\left(-\frac{14}{15}\right)^2} = \frac{14}{15}$$

$$B = -\sqrt{5.4} = -\sqrt{\frac{49}{9}} = -\frac{7}{3}$$

$$\therefore B \div A = -\frac{7}{3} \div \frac{14}{15} = -\frac{7}{3} \times \frac{15}{14} = -\frac{5}{2}$$

5 章 ⑤

닮음비가 2:3이므로 두 원의 넓이의 비는

$$2^2:3^2=4:9$$

두 원의 넓이를 각각 $4x \text{ cm}^2$, $9x \text{ cm}^2$ 라 하면

$$4x + 9x = 65\pi$$
, $13x = 65\pi$: $x = 5\pi$

따라서 큰 원의 넓이는 $9x = 45\pi (\text{cm}^2)$ 이므로 반지름

의 길이는 $\sqrt{45}$ cm이다.

1.2. 제곱근의 성질과 대소 관계 소단원 평가(기초) 정답 및 풀이

15 🗈 5

a 3

16 🗈 5

a -16

달 1

E -27

18 달 <

19 달 >

달 5

20 달 >

■ -4

\$ a

E -a

달 2a

g 3a

달 -a

g a

달 -5a

달 -2a

1.2. 제곱근의 성질과 대소 관계 소단원 평가(기본) 정답 및 풀이

1 st 2

①
$$\sqrt{\left(-\frac{1}{9}\right)^2} = \frac{1}{9}$$
 ③ $\sqrt{(-2)^2} = 2$

$$(-\sqrt{7})^2 = 7$$

$$(4) (-\sqrt{7})^2 = 7$$
 $(5) (-\sqrt{(-2)^2})^2 = 4$

2 E (3)

③
$$\sqrt{225} - \sqrt{(-4)^2} \times (-\sqrt{8})^2$$

= $15 - 4 \times 8 = 15 - 32 = -17$

3 ₽ ②

x < 0이므로

①
$$\sqrt{(-x)^2} = -x$$
 ③ $\sqrt{x^2} = -x$

$$(\sqrt{-x})^2 = -x$$

$$(4) (\sqrt{-x})^2 = -x$$
 $(5) - \sqrt{(-x)^2} = x$

4 st 4)

a > b이고. ab < 0이므로 a > 0. b < 0

$$\therefore \sqrt{9a^2} - \sqrt{4b^2} = \sqrt{(3a)^2} - \sqrt{(2b)^2}$$

$$= 3a - (-2b) = 3a + 2b$$

5 st (5)

x > 1이므로 x - 1 > 0. 1 - x < 0

$$= |x-1| + |1-x| = x-1-1+x = 2x-2$$

6 ₽ ③

 $\sqrt{20x} = \sqrt{2^2 \times 5x} = 2\sqrt{5x}$ 가 자연수가 되려면 가장 작은 자연수 x=5

7 🛊 2

$$\sqrt{\frac{315}{a}}=\sqrt{\frac{3^2\times5\times7}{a}}=3\sqrt{\frac{35}{a}}$$
 가 자연수가 되려면 가
장 작은 자연수 $a=35$

8 st 5

 $\sqrt{27+x}$ 가 자연수가 되려면 27+x 가 제곱수이어야 한다. $5^2 < 27 < 6^2$ 이므로 27 보다 큰 제곱수는 36, 49, 64, … 이다. x 는 가장 작은 자연수이므로 27 + x = 36 : x = 9

9 **s** 3

10 ₽ ③

$$2-\sqrt{5} < 0$$
, $\sqrt{5}-2 > 0$ 이旦로
 $\sqrt{(2-\sqrt{5})^2} - \sqrt{(\sqrt{5}-2)^2}$
 $=-(2-\sqrt{5})-(\sqrt{5}-2)$
 $=-2+\sqrt{5}-\sqrt{5}+2=0$

1.2. 제곱근의 성질과 대소 관계 소단원 평가(발전) 정답 및 풀이

1 a -10

2 E (4)

a > b이고, ab < 0이므로 a > 0, b < 0 3a > 0, -2a < 0, 5b < 0이므로 $\sqrt{(3a)^2} - \sqrt{(-2a)^2} + \sqrt{(5b)^2}$ $= 3a - \{-(-2a)\} + (-5b)$ = 3a - 2a - 5b = a - 5b

3 달 −4*a*

0 < a < 1에서 즉 $0 < a < 1 < \frac{1}{a}$ 이므로 $a - \frac{1}{a} < 0$: (주어진 식)= $-\left(a - \frac{1}{a}\right) - \left(a + \frac{1}{a}\right) - 2a = -4a$

4 **g** 2

 $\sqrt{5a}$ 가 정수가 되려면 5a가 어떤 자연수의 제곱이 되어야 하므로 $a=5\times n^2(n$ 은 자연수)의 꼴이어야 한다. 이때 5<a<150이므로 n=2일 때, $a=5\times 2^2=20$ n=3일 때, $a=5\times 3^2=45$

n=4일 때, $a=5\times 4^2=80$

n=5일 때, $a=5\times 5^2=125$

따라서 구하는 자연수 a는 모두 4개이다.

5 E a=10, b=2

a가 가장 작은 자연수일 때, b는 최댓값을 가지므로

$$\sqrt{\frac{40}{a}}=\sqrt{\frac{2^3\times 5}{a}}$$
 에서 $a=2\times 5=10$ 일 때, b 는 가장 큰 값을 갖는다.

$$b = \sqrt{\frac{40}{a}} = \sqrt{\frac{40}{10}} = \sqrt{4} = 2$$

1.3. 무리수와 실수

소단원 평가(기초) 정답 및 풀이

1 달 유

2달유

3 章 무

4달유

5 달 무

6 章 무

7 🛊 유

8 달 무

9 달 유

10 歐 무

11 **a** ×

12 🖹 🔾

13 달 ○

14 달 ○

15 **말** ×

16 달 ○

17 😝 5

18 e $\sqrt{5}$

19 a $1+\sqrt{5}$

20 E $1 - \sqrt{5}$

1.3. 무리수와 실수

소단원 평가(기본) 정답 및 풀이

1 a 4

④
$$\sqrt{1.96} = \sqrt{(1.4)^2} = 1.4$$
 다 유리수

2 달 3개

유리수:
$$-\sqrt{0.09} = -\sqrt{(0.3)^2} = 0.3$$
, $\sqrt{(-3)^2} = 3$, 3.248 , 0 , $\frac{1}{3}$

무리수: $\sqrt{3}-2$, π , $\sqrt{18}$

3 달 기, 크

- ㄴ. $\sqrt{4} + \sqrt{25} = 2 + 5 = 7$ 등 유리수이다.
- ㄷ. 반례: $\sqrt{3} + (-\sqrt{3}) = 0$ \Rightarrow 유리수이다.

4 E 5

- ① 정수는 모두 유리수이다.
- ② 순환하는 무한소수는 모두 유리수이다.
- ③ 서로 다른 두 무리수의 대소를 비교할 수 있다.
- ④ $\sqrt{1.69} = \sqrt{(1.3)^2} = 1.3$ 은 유리수이다.

5 E P :
$$-\sqrt{2}$$
, Q : $1+\sqrt{2}$

$$\overline{AC} = \sqrt{\overline{AB}^2 + \overline{BC}^2} = \sqrt{1+1} = \sqrt{2}$$

 $\overline{AC} = \overline{CP}$, 점 P의 좌표는 $0 + (-\sqrt{2}) = -\sqrt{2}$
 $\overline{AC} = \overline{FH} = \overline{FG} = \sqrt{2}$
점 Q의 좌표는 $1 + \sqrt{2}$ 이다.

6 計 ②

모든 작은 정사각형의 대각선의 길이는 $\sqrt{2}$ 이므로 -1에서 $\sqrt{2}$ 만큼 앞으로 간 점 B의 좌표는 $-1+\sqrt{2}$ 이다.

7 L P:
$$1+\sqrt{5}$$
, Q: $1-\sqrt{5}$

 \square ABCD의 넓이가 5이므로 한 변의 길이는 $\sqrt{5}$ 이다.

$$\therefore$$
 P: $1+\sqrt{5}$, Q: $1-\sqrt{5}$

8 計 $5-\sqrt{8}$

 \square ABCD의 넓이가 8이므로 한 변의 길이는 $\sqrt{8}$ 이다.

따라서 점 P에 대응하는 수는 $5-\sqrt{8}$

9 a 4)

- ①, ⑤ 수직선은 실수에 대응하는 점들로 완전 히 메울 수 있다. 유리수만으로 (무리수만으 로) 수직선을 완전히 메울 수는 없다.
- ② π 는 무리수이므로 수직선위에 나타낼 수 있다.
- ③ 반례: $\sqrt{3} + (-\sqrt{3}) = 0$ 유리수이다.

10 🖹 ②

- ㄱ. 순환하는 무한소수는 모두 유리수이다.
- ㄷ. 반례 : $1 = \sqrt{1} < \sqrt{2} < \sqrt{3} < \sqrt{4} = 2$
- 근. 수직선은 실수에 대응하는 점들로 완전히 메울 수 있다. 유리수만으로(무리수만으로)수직선을 완전히 메울 수는 없다.

1.3. 무리수와 실수

소단원 평가(발전) 정답 및 풀이

1 **g** $2-\pi$, $1-\sqrt{5}$

$$-\sqrt{0.3^2}$$
= -0.3 , $\frac{5}{\sqrt{121}}$ = $\frac{5}{11}$, $-\sqrt{0.1}$ = $-\sqrt{\frac{1}{9}}$ = $-\frac{1}{3}$, 0은 유리수이다.

2 E π , $\sqrt{14.4}$, $2-\sqrt{6}$

 $\pi = 3.14159 \cdots$ (순환하지 않는 무한소수) : 무리수 $\sqrt{0.16} = 0.4$: 유리수

$$\sqrt{\frac{144}{9}} = \frac{12}{3} = 4$$
: 유리수

$$\sqrt{14.4} = \sqrt{144 \times \frac{1}{10}} = 12\sqrt{\frac{1}{10}} = 12\frac{\sqrt{10}}{10} = \frac{6}{5}\sqrt{10}$$
 :

무리수

 $2-\sqrt{6}=(유리수)-(무리수)$: 무리수 따라서 무리수인 것은 $\pi,\ \sqrt{14.4},\ 2-\sqrt{6}$ 이다.

3 ₽ A(-2)

 $\overline{AP} = \overline{AB} = \sqrt{2}$ 따라서 점 A가 나타내는 수는 $-2 - \sqrt{2} + \sqrt{2} = -2$ \therefore A(-2)

4 **s** ①

- ¬. 무한소수는 순환소수(유리수)와 순환하지 않는무한소수(무리수)로 나뉜다. ∴ 거짓
- ㄷ. 유리수 중 순환소수는 무한소수이다.
- :. 거짓
- ㄹ. $\sqrt{10000} = 100$ 의 제곱근은 ± 10 이다.
- :. 거짓
- ㅁ. 0의 제곱근은 0뿐으로 1개이다. : 거짓
- ㅂ. √16=4 ∴ 거짓

따라서 옳은 것의 개수는 ㄴ의 1개이다.

5 E $2\sqrt{2}$

□ABCD의 한 변의 길이가 1이므로 $\overline{AC}=\sqrt{2}$ 이다. 따라서 $\overline{AC}=\overline{AP}=\overline{AQ}=\sqrt{2}$ 이므로 $x=2-\sqrt{2},\ y=2+\sqrt{2}$ $\therefore y-x=2+\sqrt{2}-(2-\sqrt{2})=2\sqrt{2}$

1.4. 제곱근의 곱셈

소단원 평가(기초) 정답 및 풀이

1 s
$$\sqrt{15}$$

2 E
$$\sqrt{70}$$

3 E
$$2\sqrt{35}$$

4 E
$$15\sqrt{10}$$

8 E
$$2\sqrt{7}$$

$$\sqrt{28} = \sqrt{2^2 \times 7} = 2\sqrt{7}$$

9 E
$$4\sqrt{2}$$

$$\sqrt{32} = \sqrt{4^2 \times 2} = 4\sqrt{2}$$

10 a
$$10\sqrt{2}$$

$$2\sqrt{50} = 2\sqrt{5^2 \times 2} = 10\sqrt{2}$$

$$5\sqrt{48} = 5\sqrt{4^2 \times 3} = 20\sqrt{3}$$

12
$$\sqrt{24}$$

$$2\sqrt{6} = \sqrt{2^2 \times 6} = \sqrt{24}$$

$$5\sqrt{5} = \sqrt{5^2 \times 5} = \sqrt{125}$$

$$6\sqrt{3} = \sqrt{6^2 \times 3} = \sqrt{108}$$

$$7\sqrt{2} = \sqrt{7^2 \times 2} = \sqrt{98}$$

17
$$= -\sqrt{98}$$

19 a
$$-3\sqrt{6}$$

20 E
$$\sqrt{30}$$

1.4. 제곱근의 곱셈

소단원 평가(기본) 정답 및 풀이

1 🖺 🕕

$$2\sqrt{3} \times \left(-\frac{1}{2}\right) \times 4\sqrt{7} = -\sqrt{3} \times 4\sqrt{7} = -4\sqrt{21}$$

2 計 8

$$-2\sqrt{x} \times \frac{\sqrt{7}}{4} \times 2\sqrt{7x} = -7x = -56$$

3 달 ①

$$\frac{\sqrt{80}}{2\sqrt{3}} = \frac{\sqrt{4^2 \times 5}}{2\sqrt{3}} = \frac{4\sqrt{5}}{2\sqrt{3}} = \frac{a\sqrt{5}}{\sqrt{3}}$$

$$\therefore a = 2$$

4 **t** ①

$$\sqrt{18} = \sqrt{3^2 \times 2} = 3\sqrt{2} = a\sqrt{2} \qquad \therefore a = 3$$

$$2\sqrt{5} = \sqrt{2^2 \times 5} = \sqrt{20} = \sqrt{b} \qquad \therefore b = 20$$

$$\therefore \sqrt{ab} = \sqrt{3 \times 20} = \sqrt{60} = 2\sqrt{15}$$

5 🖹 ②

$$4\sqrt{5} \times 3\sqrt{6} \times \left(-\sqrt{\frac{1}{3}}\right)$$
$$=-12\sqrt{5 \times 6 \times \frac{1}{3}} =-12\sqrt{10}$$

6 ₽ 5

7 \$ (5)

$$\sqrt{\frac{2}{100}} \times \sqrt{0.05} \times \sqrt{\frac{1}{10}}$$

$$= \sqrt{\frac{2}{100}} \times 0.05 \times \frac{1}{10}$$

$$= \sqrt{\frac{2}{100}} \times \frac{5}{100} \times \frac{1}{10}$$

$$= \sqrt{\frac{1}{10000}} = \frac{1}{100}$$

8 달 ④

$$\sqrt{2} \times \sqrt{5} \times \sqrt{a} \times \sqrt{20} \times \sqrt{2a}$$

$$= \sqrt{2 \times 5 \times a \times 20 \times 2a}$$

$$= \sqrt{20^2 \times a^2} = \sqrt{(20a)^2} = 20a \ (\because \ a > 0)$$
즉, $20a = 40$ 이므로 $a = 2$

9 **at** ②

$$\sqrt{72} = \sqrt{6^2 \times 2} = 6\sqrt{2} \qquad \therefore \ k = 6$$

10 章 ③

$$3\sqrt{2} = \sqrt{3^2 \times 2} = \sqrt{18}$$
 $\therefore a = 18$
 $\sqrt{56} = \sqrt{2^2 \times 14} = 2\sqrt{14}$ $\therefore b = 2, c = 14$
 $\therefore a + b + c = 18 + 2 + 14 = 34$

1.4. 제곱근의 곱셈

소단원 평가(발전) 정답 및 풀이

1 **a** 2

$$\sqrt{2} \times \sqrt{3} \times \sqrt{a} \times \sqrt{12} \times \sqrt{2a}$$

$$= \sqrt{2 \times 3 \times a \times 12 \times 2a}$$

$$= \sqrt{12^2 \times a^2} = \sqrt{(12a)^2} = 12a(\because a > 0)$$
따라서 $12a = 24$ 이므로 $a = 2$

2 🛊 3

$$\sqrt{0.12}$$
 를 $\sqrt{2}$ 와 $\sqrt{3}$ 의 곱으로 나타내면
$$\sqrt{0.12} = \sqrt{\frac{2^2 \times 3}{100}} = \frac{2\sqrt{3}}{10} = \frac{a^2b}{10}$$

3 달 ②

$$a>0,\ b>0$$
일 때, $a\sqrt{b}=\sqrt{a^2b}$ $4\sqrt{3}=\sqrt{4^2\times 3}=\sqrt{48}$ 이므로 $90-7a=48,\ -7a=-42$ $\therefore a=6$

4 t ①

$$\begin{array}{ll} \sqrt{54} = \sqrt{3^2 \times 6} = 3\sqrt{6} & \therefore a = 6 \\ \sqrt{180} = \sqrt{6^2 \times 5} = 6\sqrt{5} & \therefore b = 5 \\ \sqrt{1000} = \sqrt{10^2 \times 10} = 10\sqrt{10} & \therefore c = 10 \\ \therefore \sqrt{\frac{ac}{b}} = \sqrt{\frac{6 \times 10}{5}} = \sqrt{12} = \sqrt{2^2 \times 3} = 2\sqrt{3} \end{array}$$

5 計 ③

$$\sqrt{0.08} = \sqrt{\frac{8}{100}} = \frac{2\sqrt{2}}{10} = \frac{\sqrt{2}}{5} \qquad \therefore a = \frac{1}{5}$$

$$\sqrt{245} = \sqrt{7^2 \times 5} = 7\sqrt{5} \qquad \therefore b = 7$$

$$\therefore ab = \frac{1}{5} \times 7 = \frac{7}{5}$$

1.5. 제곱근의 나눗셈

소단원 평가(기초) 정답 및 풀이

$$\frac{\sqrt{77}}{\sqrt{11}} = \sqrt{\frac{77}{11}} = \sqrt{7}$$

2 E $\sqrt{5}$

$$\sqrt{40} \div \sqrt{8} = \frac{\sqrt{40}}{\sqrt{8}} = \sqrt{\frac{40}{8}} = \sqrt{5}$$

3 章 6

$$\sqrt{72} \div \sqrt{2} = \frac{\sqrt{72}}{\sqrt{2}} = \sqrt{\frac{72}{2}} = \sqrt{36} = 6$$

4달(가) 5, (나) 3, (다) 5

5 달 (가) 90, (나) 2, (다) 10, (라) 10

6 E $\frac{2\sqrt{6}}{5}$

7 E $\frac{3\sqrt{5}}{11}$

8 E $\frac{\sqrt{3}}{10}$

$$\sqrt{0.03} = \sqrt{\frac{3}{100}} = \sqrt{\frac{3}{10^2}} = \frac{\sqrt{3}}{10}$$

9 E $\frac{5\sqrt{2}}{4}$

10 = $\frac{\sqrt{5}}{5}$

11 🖨
$$\frac{\sqrt{15}}{3}$$

12
$$\frac{\sqrt{6}}{6}$$

13 🖹 2

$$\sqrt{\frac{5}{3}} \times \sqrt{\frac{12}{5}} = \sqrt{\frac{5}{3}} \times \frac{12}{5} = \sqrt{4} = 2$$

14 $rac{\sqrt{55}}{5}$

$$\sqrt{\frac{4}{5}} \times \sqrt{\frac{11}{4}} = \sqrt{\frac{4}{5} \times \frac{11}{4}} = \sqrt{\frac{11}{5}} = \frac{\sqrt{55}}{5}$$

15 ₽ √5

16 ₽ 3

18 \$\delta \square \square 10\$

19 $rac{5\sqrt{2}}{6}$

20 E $\frac{\sqrt{3}}{10}$

1.5. 제곱근의 나눗셈

소단원 평가(기본) 정답 및 풀이

1 달 ④

$$4 \quad \sqrt{50} \div \sqrt{2} = \frac{\sqrt{50}}{\sqrt{2}} = \sqrt{25} = 5$$

2 달 ⑤

$$\frac{\sqrt{32+x}}{\sqrt{8}} = \sqrt{\frac{32+x}{8}} = 4\sqrt{3} = \sqrt{16\times3} = \sqrt{48}$$
$$\therefore \frac{32+x}{8} = 48 \quad \therefore x = 352$$

3 章 ②

$$\sqrt{0.0012} = \sqrt{\frac{12}{10000}} = \frac{2}{100} \sqrt{3} = \frac{1}{50} \sqrt{3} = k\sqrt{3}$$
$$\therefore k = \frac{1}{50}$$

4 **a** (4)

$$\sqrt{\frac{150}{49}} = \frac{5\sqrt{6}}{7}$$
이므로 $a = \frac{5}{7}$

$$\sqrt{0.002} = \sqrt{\frac{20}{10000}} = \frac{2\sqrt{5}}{100} = \frac{1}{50}\sqrt{5}$$
이므로
$$b = \frac{1}{50}$$

$$\therefore \frac{1}{ab} = \frac{1}{a} \times \frac{1}{b} = \frac{7}{5} \times 50 = 70$$

5 달 ②

$$\frac{\sqrt{3}}{2\sqrt{5}} = \frac{\sqrt{3} \times \sqrt{5}}{2\sqrt{5} \times \sqrt{5}} = \frac{\sqrt{15}}{10}$$

6 章 ⑤

$$\frac{4}{\sqrt{20}} = \frac{4}{2\sqrt{5}} = \frac{4 \times \sqrt{5}}{2\sqrt{5} \times \sqrt{5}} = \frac{4\sqrt{5}}{10} = \frac{2}{5}\sqrt{5}$$

$$\therefore a = \frac{2}{5}$$

$$\frac{5}{2\sqrt{10}} = \frac{5 \times \sqrt{10}}{2\sqrt{10} \times \sqrt{10}} = \frac{5\sqrt{10}}{20} = \frac{\sqrt{10}}{4} = \frac{1}{4}\sqrt{10}$$

$$\therefore b = \frac{1}{4}$$

$$\therefore a+b=\frac{2}{5}+\frac{1}{4}=\frac{8+5}{20}=\frac{13}{20}$$

7 \$ 3

$$4\sqrt{5} \div 2\sqrt{18} \times 3\sqrt{6}$$

$$= \frac{4\sqrt{5} \times 3\sqrt{6}}{2\sqrt{18}} = \frac{12\sqrt{30}}{6\sqrt{2}} = 2\sqrt{15}$$

8 (4)

$$(\sqrt{48} - \sqrt{12}) \div \sqrt{3} \times 2\sqrt{2} = \frac{\sqrt{48} - \sqrt{12}}{\sqrt{3}} \times 2\sqrt{2}$$
$$= \frac{4\sqrt{3} - 2\sqrt{3}}{\sqrt{3}} \times 2\sqrt{2}$$
$$= \frac{2\sqrt{3}}{\sqrt{3}} \times 2\sqrt{2} = 4\sqrt{2}$$

9 E $2\sqrt{2}$

어두운 정사각형의 넓이는 정사각형 ABCD의 넓이의 $\frac{1}{8}$ 배이다.

즉, 어두운 정사각형의 넓이는 $64 \div 8 = 8$ 이다. 이때 어두운 정사각형의 한 변의 길이는 $\sqrt{8} = 2\sqrt{2}$

10 🖹 $3\sqrt{2}$

세 직각이등변삼각형의 넓이의 합은

$$\frac{(\sqrt{5})^2}{2} + \frac{(\sqrt{6})^2}{2} + \frac{(\sqrt{7})^2}{2} = \frac{5+6+7}{2} = 9$$

새로운 직각이등변삼각형의 빗변이 아닌 한 변의 길 이를 x라 하면

$$\frac{1}{2}x^2 = 9$$
, $x^2 = 18$ $\therefore x = \sqrt{18} = 3\sqrt{2}$

1.5. 제곱근의 나눗셈

소단원 평가(발전) 정답 및 풀이

(주어진 식)=
$$\sqrt{\frac{3b}{2a} \times \frac{5b}{6a} \times \frac{4a}{b} \times \frac{3a}{2b}}$$

$$= \sqrt{\frac{15}{2}} = \frac{\sqrt{30}}{2}$$

1 **t** 2

$$\sqrt{2\sqrt{5} \div \left(-\sqrt{30}\right) \times \left(-3\sqrt{24}\right)}$$

$$= \sqrt{2\sqrt{5} \times \left(-\frac{1}{\sqrt{30}}\right) \times \left(-6\sqrt{6}\right)}$$

$$= \sqrt{12} = 2\sqrt{3}$$

2 🖹 ③

$$a > 0$$
일 때, $\sqrt{a^2} = a$
① $\sqrt{a^2b} = \sqrt{a^2} \times \sqrt{b} = a\sqrt{b}$
② $-a\sqrt{b} = -\sqrt{a^2} \times \sqrt{b} = -\sqrt{a^2b}$
③ $-\sqrt{ab^2} = -\sqrt{a} \times \sqrt{b^2} = -b\sqrt{a}$
④ $\frac{\sqrt{ab}}{a^2} = \sqrt{\frac{ab}{a^4}} = \sqrt{\frac{b}{a^3}}$
⑤ $\sqrt{\frac{b^2}{ab}} = \frac{\sqrt{b^2}}{\sqrt{ab}} = \frac{b}{\sqrt{ab}}$

3 章 ②

$$\frac{2\sqrt{a}}{3\sqrt{6}} = \frac{2\sqrt{a} \times \sqrt{6}}{3\sqrt{6} \times \sqrt{6}} = \frac{2\sqrt{6a}}{18} = \frac{\sqrt{6a}}{9}$$
따라서 $\frac{\sqrt{6a}}{9} = \frac{\sqrt{30}}{9}$ 이므로
$$6a = 30 \qquad \therefore a = 5$$

4 a 3

□DBCE =
$$\frac{1}{4}$$
 \triangle ABC이므로 \triangle ADE = $\frac{3}{4}$ \triangle ABC \triangle ABC \triangle ADE (AA닮음)이고, \triangle ABC : \triangle ADE = 4:3 이므로 \triangle ABC와 \triangle ADE의 닮음비는 $\sqrt{4}:\sqrt{3}$ 즉, $2:\sqrt{3}$ 따라서 $\overline{BC}:\overline{DE}=2:\sqrt{3}$ 이므로 $2\sqrt{3}:\overline{DE}=2:\sqrt{3}$, $2\overline{DE}=6$ $\overline{DE}=3$

$\mathbf{5}$ e $\frac{\sqrt{30}}{2}$

1.6. 제곱근의 덧셈과 뺄셈 소단원 평가(기초) 정답 및 풀이

15 E
$$\frac{\sqrt{35} + 2\sqrt{21}}{7}$$

1 😝
$$\sqrt{3}$$

$$2 \equiv \sqrt{2}$$

3 E
$$3\sqrt{3} - \sqrt{6}$$

4
$$\mathbf{E} - \sqrt{3}$$

5 E
$$3-\sqrt{6}$$

6 a
$$3-\sqrt{2}$$

8 E
$$2\sqrt{6}-3\sqrt{2}$$

9 E
$$2\sqrt{6}$$

10 a
$$-4\sqrt{2}-5$$

11 E
$$-2\sqrt{10}$$

12 E
$$\sqrt{15} - \sqrt{6}$$

13 E
$$-\frac{3\sqrt{2}}{2} + \frac{4\sqrt{3}}{3}$$

14
$$\equiv 3-3\sqrt{5}$$

1.6. 제곱근의 덧셈과 뺄셈 소단원 평가(기본) 정답 및 풀이

1 🛮 5

(주어진 식)=
$$(3-b)\sqrt{2}+(-a+1)\sqrt{3}$$

= $\sqrt{2}+5\sqrt{3}$
 $3-b=1, -a+1=5$ 에서
 $a=-4, b=2$ $\therefore b-a=6$

2 🖹 ②

$$\sqrt{12} - \sqrt{27} + \sqrt{48} - 5\sqrt{3}$$

$$= 2\sqrt{3} - 3\sqrt{3} + 4\sqrt{3} - 5\sqrt{3}$$

$$= 6\sqrt{3} - 8\sqrt{3} = -2\sqrt{3}$$

3 달 ①

(주어진 식)=
$$10\sqrt{2}-6\sqrt{7}+3\sqrt{7}-6\sqrt{2}$$

= $4\sqrt{2}-3\sqrt{7}$
따라서 $a=4$, $b=-3$ 이므로 $a+b=1$

4 E ②

(주어진 식)=
$$5\sqrt{2}-3-5\sqrt{2}=-3$$

5 달 ①

(주어진 식)=
$$3\sqrt{5}-3\sqrt{3}+2\sqrt{5}+2\sqrt{3}$$

= $-\sqrt{3}+5\sqrt{5}$
따라서 $a=-1,\ b=5$ 이므로 $a-b=-6$

6 **a** ①

$$\sqrt{27} - \sqrt{3} (\sqrt{15} + 7) + \sqrt{125}$$

$$= \sqrt{27} - \sqrt{45} - 7\sqrt{3} + \sqrt{125}$$

$$= 3\sqrt{3} - 3\sqrt{5} - 7\sqrt{3} + 5\sqrt{5}$$

$$= -4\sqrt{3} + 2\sqrt{5} = a\sqrt{3} + b\sqrt{5}$$

$$\therefore a = -4, b = 2$$

$$\therefore a - 2b = -8$$

7 \$\text{1} $1-3\sqrt{6}$

$$\begin{split} \sqrt{3} \, a - \sqrt{2} \, b &= \sqrt{3} \, (\sqrt{3} - \sqrt{2}\,) - \sqrt{2} \, (2\,\sqrt{3} + \sqrt{2}\,) \\ &= 3 - \sqrt{6} - 2\,\sqrt{6} - 2 \\ &= 1 - 3\,\sqrt{6} \end{split}$$

8 \$ 5

$$\frac{\sqrt{18}-4}{\sqrt{2}} = \frac{\sqrt{2}(3\sqrt{2}-4)}{2} = \frac{6-4\sqrt{2}}{2} = 3-2\sqrt{2}$$
 따라서 $a=3,\ b=-2$ 이므로 $a-b=3-(-2)=5$

9 **t** ①

(주어진 식)=
$$8\sqrt{3}+\sqrt{6}-\frac{6-3\sqrt{2}}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}}$$
$$=8\sqrt{3}+\sqrt{6}-\frac{6\sqrt{3}-3\sqrt{6}}{3}$$
$$=8\sqrt{3}+\sqrt{6}-(2\sqrt{3}-\sqrt{6})$$
$$=6\sqrt{3}+2\sqrt{6}$$

10 **s** ①

(주어진 식)=
$$3\sqrt{6}+6+2+\sqrt{6}=8+4\sqrt{6}$$

1.6 제곱근의 덧셈과 뺄셈 소단원 평가(발전) 정답 및 풀이

1 🛊 🛈

(주어진 식)=
$$10-3\sqrt{2}-(\sqrt{6}-3\sqrt{3})\times\frac{\sqrt{2}}{\sqrt{3}}$$

= $10-3\sqrt{2}-(2-3\sqrt{2})$
= $10-3\sqrt{2}-2+3\sqrt{2}=8$

2 달 23

$$a \circ 2 = (a+2)\sqrt{3} + 2a\sqrt{2}$$

 $2a \circ 1 = (2a+1)\sqrt{3} + 2a\sqrt{2}$
 $\therefore (a \circ 2) + (2a \circ 1)$
 $= \{(a+2)\sqrt{3} + 2a\sqrt{2}\} + \{(2a+1)\sqrt{3} + 2a\sqrt{2}\}$
 $= (3a+3)\sqrt{3} + 4a\sqrt{2}$
따라서 $(3a+3)\sqrt{3} + 4a\sqrt{2} = b\sqrt{3} + 20\sqrt{2}$ 이므로
 $3a+3=b, \ 4a=20$
 $\therefore a=5, \ b=18$
 $\therefore a+b=5+18=23$

3 E $2\sqrt{3} - \sqrt{6}$

$$\sqrt{2} \left(\frac{15}{\sqrt{6}} - \frac{10}{\sqrt{12}} \right) + \sqrt{3} \left(\frac{4}{\sqrt{18}} - 3 \right)$$

$$= \frac{15}{\sqrt{3}} - \frac{10}{\sqrt{6}} + \frac{4}{\sqrt{6}} - 3\sqrt{3}$$

$$= 5\sqrt{3} - \frac{5\sqrt{6}}{3} + \frac{2\sqrt{6}}{3} - 3\sqrt{3}$$

$$= 2\sqrt{3} - \sqrt{6}$$

4 E $\frac{2\sqrt{33}}{3}$

$$\sqrt{6} \left(\frac{6}{\sqrt{32}} - \frac{3}{\sqrt{2}} \right) - \sqrt{2} \left(\frac{2}{\sqrt{6}} - \frac{10}{\sqrt{12}} \right)$$

$$= \frac{3\sqrt{6}}{2\sqrt{2}} - 3\sqrt{3} - \frac{2}{\sqrt{3}} + \frac{10}{\sqrt{6}}$$

$$= \frac{3\sqrt{3}}{2} - 3\sqrt{3} - \frac{2\sqrt{3}}{3} + \frac{5\sqrt{6}}{3}$$

$$= -\frac{13\sqrt{3}}{6} + \frac{5\sqrt{6}}{3}$$
따라서 $a = -\frac{13}{6}$, $b = \frac{5}{3}$ 이므로

$$\sqrt{b-6a} = \sqrt{\frac{5}{3} - 6 \times \left(-\frac{13}{6}\right)}$$
$$= \sqrt{\frac{44}{3}} = \frac{2\sqrt{11}}{\sqrt{3}} = \frac{2\sqrt{33}}{3}$$

5 🗈 🛈

정사각형 ABCD의 한 변의 길이는
$$\sqrt{2}$$
이므로 $\overline{BC} = \sqrt{2}$, $\overline{BP} = \overline{BA} = \sqrt{2}$, $\overline{CQ} = \overline{CD} = \sqrt{2}$ \therefore P $(3-2\sqrt{2})$, Q $(3+\sqrt{2})$ 즉 $a=3-2\sqrt{2}$, $b=3+\sqrt{2}$ 이므로 $\frac{a+b}{\sqrt{2}} = \frac{(3-2\sqrt{2})+(3+\sqrt{2})}{\sqrt{2}} = \frac{6-\sqrt{2}}{\sqrt{2}}$ $= \frac{(6-\sqrt{2})\times\sqrt{2}}{\sqrt{2}\times\sqrt{2}} = \frac{6\sqrt{2}-2}{2}$ $= 3\sqrt{2}-1$

1.7 실수의 대소 관계

소단원 평가(기초) 정답 및 풀이

1 달 >

 $4 = \sqrt{16}$ 이고 $\sqrt{16} > \sqrt{10}$ 이므로 $4 > \sqrt{10}$

2 달 <

(음수)<(양수)이므로 $-6 < \sqrt{35}$

3 計 >

$$\sqrt{0.1} = \sqrt{\frac{1}{10}}$$
, $\frac{1}{6} = \sqrt{\frac{1}{36}}$ 이고 $\sqrt{\frac{1}{10}} > \sqrt{\frac{1}{36}}$ 이므로

$$\sqrt{0.1} > \frac{1}{6}$$

4 🗈 >

$$1.5 = \sqrt{2.25}$$
 이고 $\sqrt{1.5} < \sqrt{2.25}$ 이므로 $\sqrt{1.5} < 1.5$

$$\therefore -\sqrt{1.5} > -1.5$$

5 計 >

8 E
$$3-\sqrt{7}$$
, $>$, $>$

9 달 <

10 駐 <

11 달 >

12 달 >

13 計 >

$$(6+\sqrt{7})-7=\sqrt{7}-1=\sqrt{7}-\sqrt{1}>0$$

 $\therefore 6+\sqrt{7}>7$

14 달 <

$$4-(\sqrt{15}+1)=3-\sqrt{15}=\sqrt{9}-\sqrt{15}<0$$

∴ $4<\sqrt{15}+1$

15 計 >

$$\sqrt{14} - 3 - (\sqrt{11} - 3) = \sqrt{14} - \sqrt{11} > 0$$

 $\therefore \sqrt{14} - 3 > \sqrt{11} - 3$

16 歐 <

두 수 4, $\sqrt{17}$ 에서 $4 < \sqrt{17}$ 이므로 양변에 같은 수 $\sqrt{3}$ 을 더해도 부등호의 방향은 바뀌지 않는다. $\therefore \sqrt{3} + 4 < \sqrt{17} + \sqrt{3}$

17 달 <

$$3 < \sqrt{11} < 4$$
에서 $\sqrt{11} = 3. \times \times \times$ $2 < \sqrt{5} < 3$ 에서 $\sqrt{5} = 2. \times \times \times$ 이므로 $\sqrt{5} + 3 = 5. \times \times \times$ $\therefore \sqrt{11} < \sqrt{5} + 3$

18 st <

$$4 < \sqrt{19} < 5$$
에서 $\sqrt{19} = 4. \times \times \times$ 이므로 $\sqrt{19} - 3 = 1. \times \times \times$ $1 < \sqrt{2} < 2$ 에서 $\sqrt{2} = 1. \times \times \times$ 이므로 $4 - \sqrt{2} = 2. \times \times \times$ $\therefore \sqrt{19} - 3 < 4 - \sqrt{2}$

19 E $\sqrt{2}+1$, $\sqrt{7}$

$$1 < \sqrt{3} < 2$$
에서 $\sqrt{3} = 1. \times \times \times$

$$3 < \sqrt{11} < 4$$
에서 $\sqrt{11} = 3. \times \times \times$

$$1 < \sqrt{2} < 2$$
에서 $\sqrt{2} = 1. \times \times \times$

$$\therefore \sqrt{2} + 1 = 2. \times \times \times$$

$$2 < \sqrt{7} < 3$$
에서 $\sqrt{7} = 2. \times \times \times$

$$2 < \sqrt{5} < 3$$
에서 $\sqrt{5} = 2. \times \times \times$

$$\therefore \sqrt{5} + 2 = 4. \times \times \times$$

따라서 2와 3 사이의 수는 $\sqrt{2}+1$, $\sqrt{7}$ 이다.

20 E
$$-\sqrt{2}$$
, $-\frac{1}{5}$, 4, $\sqrt{17}$

먼저 양수끼리, 음수끼리 대소를 비교하면

$$4 = \sqrt{16}$$
이고 $\sqrt{16} < \sqrt{17}$ 이므로 $4 < \sqrt{17}$

$$\frac{1}{5} = \sqrt{\frac{1}{25}}$$
이고 $\sqrt{2} > \sqrt{\frac{1}{25}}$ 이므로 $-\sqrt{2} < -\frac{1}{5}$

따라서 (음수)<(양수)이므로

$$-\sqrt{2} < -\frac{1}{5} < 4 < \sqrt{17}$$

1.7 실수의 대소 관계

소단원 평가(기본) 정답 및 풀이

1 a ①

2 F (1)

$$x-y=-1-(2-2\sqrt{2})=2\sqrt{2}-3<0$$
이므로 $x< y$ $y-z=(2-2\sqrt{2})-(2-\sqrt{7})=\sqrt{7}-2\sqrt{2}<0$ 이므로 $y< z$

$\therefore x < y < z$

3 ₽ ③

- ① $2\sqrt{3} = \sqrt{12}$ 이고 $\sqrt{12} > \sqrt{8}$ 이므로 $2\sqrt{3} > \sqrt{8}$
- ② $(\sqrt{5} + \sqrt{2}) 3\sqrt{2} = \sqrt{5} 2\sqrt{2} = \sqrt{5} \sqrt{8} < 0$ $\therefore \sqrt{5} + \sqrt{2} < 3\sqrt{2}$
- $(3) (5-2\sqrt{6})-(5-\sqrt{27})=5-2\sqrt{6}-5+\sqrt{27}$ $=\sqrt{27}-\sqrt{24}>0$

$$\therefore 5-2\sqrt{6} > 5-\sqrt{27}$$

(4) $(5\sqrt{3}-\sqrt{7})-(3\sqrt{5}-\sqrt{7})$ $=5\sqrt{3}-\sqrt{7}-3\sqrt{5}+\sqrt{7}$ $=\sqrt{75}-\sqrt{45}>0$

$$\therefore 5\sqrt{3} - \sqrt{7} > 3\sqrt{5} - \sqrt{7}$$

(5) $(5\sqrt{3}-\sqrt{18})-(\sqrt{2}+\sqrt{12})$ $=5\sqrt{3}-3\sqrt{2}-\sqrt{2}-2\sqrt{3}$ $=3\sqrt{3}-4\sqrt{2}$ $=\sqrt{27}-\sqrt{32}<0$

 $\therefore 5\sqrt{3} - \sqrt{18} < \sqrt{2} + \sqrt{12}$

4 st (5)

- ① $(\sqrt{3}+1)-(\sqrt{2}+1)$ $=\sqrt{3}+1-\sqrt{2}-1=\sqrt{3}-\sqrt{2}>0$ $\therefore \sqrt{3}+1 > \sqrt{2}+1$
- ② $\sqrt{18} (5 \sqrt{2})$ $=3\sqrt{2}-5+\sqrt{2}=4\sqrt{2}-5=\sqrt{32}-\sqrt{25}>0$

$$\therefore \sqrt{18} > 5 - \sqrt{2}$$

- $(3) (3\sqrt{2}-1)-(2\sqrt{3}-1)$ $=3\sqrt{2}-1-2\sqrt{3}+1$ $=3\sqrt{2}-2\sqrt{3}=\sqrt{18}-\sqrt{12}>0$ $\therefore 3\sqrt{2}-1 > 2\sqrt{3}-1$
- $(4) (5\sqrt{6}-3\sqrt{5})-(\sqrt{5}+2\sqrt{6})$ $=5\sqrt{6}-3\sqrt{5}-\sqrt{5}-2\sqrt{6}$ $=3\sqrt{6}-4\sqrt{5}=\sqrt{54}-\sqrt{80}<0$ $\therefore 5\sqrt{6} - 3\sqrt{5} < \sqrt{5} + 2\sqrt{6}$
- (5) $(3\sqrt{3}+1)-(2\sqrt{5}+1)$ $=3\sqrt{3}+1-2\sqrt{5}-1$ $=3\sqrt{3}-2\sqrt{5}=\sqrt{27}-\sqrt{20}>0$ $\therefore 3\sqrt{3} + 1 > 2\sqrt{5} + 1$

5 計 ③

(i) $a-b=(2-5\sqrt{2})-(-6)=2-5\sqrt{2}+6$ $=8-5\sqrt{2}=\sqrt{64}-\sqrt{50}>0$

$$\therefore a > b$$

- (ii) $b-c=-6-(2-3\sqrt{5})=-6-2+3\sqrt{5}$ $=3\sqrt{5}-8=\sqrt{45}-\sqrt{64}<0$ $\therefore b < c$
- (iii) $a-c=(2-5\sqrt{2})-(2-3\sqrt{5})$ $=2-5\sqrt{2}-2+3\sqrt{5}$ $=3\sqrt{5}-5\sqrt{2}=\sqrt{45}-\sqrt{50}<0$ $\therefore a < c$

따라서 (i)~(iii)에서 b < a < c

6 **s** 4

- (1) $(\sqrt{5} + \sqrt{2}) (\sqrt{5} + 1) = \sqrt{2} 1 > 0$ $\therefore \sqrt{5} + \sqrt{2} > \sqrt{5} + 1$
- (2) $(3+\sqrt{2})-(\sqrt{9}+2)=\sqrt{2}-2<0$ $3 + \sqrt{2} < \sqrt{9} + 2$
- $(3) \sqrt{18} < -\sqrt{16}$ $\therefore -\sqrt{18} < -4$
- $(3\sqrt{5}+\sqrt{6})-(2\sqrt{11}+\sqrt{6})$ $=3\sqrt{5}-2\sqrt{11}=\sqrt{45}-\sqrt{44}>0$ $3\sqrt{5} + \sqrt{6} > 2\sqrt{11} + \sqrt{6}$
- (5) $(3\sqrt{3}-4\sqrt{2})-(-\sqrt{12}+\sqrt{8})$ $=3\sqrt{3}-4\sqrt{2}+2\sqrt{3}-2\sqrt{2}$

$$= 5\sqrt{3} - 6\sqrt{2} = \sqrt{75} - \sqrt{72} > 0$$

$$\therefore 3\sqrt{3} - 4\sqrt{2} > -\sqrt{12} + \sqrt{8}$$

7 計 上, 上

$$∃. (5\sqrt{3} - \sqrt{18}) - (\sqrt{12} + \sqrt{2})$$

$$= 3\sqrt{3} - 4\sqrt{2} = \sqrt{27} - \sqrt{32} < 0$$

$$∴ 5\sqrt{3} - \sqrt{18} < \sqrt{12} + \sqrt{2}$$

8 E (1) A < B (2) C < A (3) C < A < B

(1)
$$A - B = (2\sqrt{5} + 1) - (8 - \sqrt{5}) = 3\sqrt{5} - 7$$

= $\sqrt{45} - \sqrt{49} < 0$

$$\therefore A < B$$

(2)
$$A - C = (2\sqrt{5} + 1) - (3\sqrt{2} + 1) = 2\sqrt{5} - 3\sqrt{2}$$

= $\sqrt{20} - \sqrt{18} > 0$
 $\therefore C < A$

9 달 ⑤

$$A - B = (\sqrt{3} + \sqrt{2}) - 2\sqrt{2} = \sqrt{3} - \sqrt{2} > 0$$

$$\therefore B < A$$

$$B-C=2\sqrt{2}-(3\sqrt{2}-\sqrt{5})=\sqrt{5}-\sqrt{2}>0$$

 $\therefore C < B$

10 E $2-\sqrt{13}$

$$a-b=(3-\sqrt{15}\,)-(-\sqrt{13}\,+3)=-\sqrt{15}\,+\sqrt{13}\,<0$$
이므로 $a< b$

$$a-c = (3-\sqrt{15})-(-1)$$

= $4-\sqrt{15} = \sqrt{16}-\sqrt{15} > 0$

이므로
$$a > c$$

$$\therefore c < a < b$$

따라서 가장 큰 수는 $b=-\sqrt{13}+3$, 가장 작은 수는 c=-1이므로

$$b+c = (-\sqrt{13}+3)+(-1) = 2-\sqrt{13}$$

1.7 실수의 대소 관계

소단원 평가(발전) 정답 및 풀이

1 \$ 4, **5**

- ① $3 (\sqrt{3} + 2) = 1 \sqrt{3} < 0$ $\therefore 3 < \sqrt{3} + 2$
- ② $\sqrt{2} (\sqrt{4} \sqrt{2}) = 2\sqrt{2} 2 = \sqrt{8} \sqrt{4} > 0$ $\therefore \sqrt{2} > \sqrt{4} - \sqrt{2}$
- $(3) \sqrt{0.8} (-\sqrt{0.7}) = -\sqrt{\frac{8}{10}} + \sqrt{\frac{7}{10}}$ $= \frac{\sqrt{7} \sqrt{8}}{\sqrt{10}} < 0$
 - $\therefore -\sqrt{0.8} < -\sqrt{0.7}$
- $(2\sqrt{3})^2 (3\sqrt{2} 1)^2$ $= 12 (19 6\sqrt{2})$ $= 6\sqrt{2} 7 = \sqrt{72} \sqrt{49} > 0$ ∴ $2\sqrt{3} > 3\sqrt{2} 1$
- ⑤ $(5\sqrt{3})^2 (3\sqrt{5} + 2)^2 = 75 (45 + 12\sqrt{5} + 4)$ = $26 - 12\sqrt{5}$ = $\sqrt{676} - \sqrt{720} < 0$
 - $\therefore 5\sqrt{3} < 3\sqrt{5} + 2$

2 달 A > B > C

$$A - B = (5\sqrt{2} - 2) - 5 = 5\sqrt{2} - 7 = \sqrt{50} - \sqrt{49} > 0$$

 $\therefore A > B$

$$B-C=5-(4\sqrt{3}-2)=7-4\sqrt{3}=\sqrt{49}-\sqrt{48}>0$$

 $\therefore B > C$

 $\therefore A > B > C$

3 E A > B

$$A = 3\sqrt{5} - 2\sqrt{2} = \sqrt{45} - \sqrt{8} > 0$$

$$B = 2\sqrt{10} - 3 = \sqrt{40} - \sqrt{9} > 0$$

이ㅁ로

$$A^{2} - B^{2} = (3\sqrt{5} - 2\sqrt{2})^{2} - (2\sqrt{10} - 3)^{2}$$
$$= (53 - 12\sqrt{10}) - (49 - 12\sqrt{10}) = 4 > 0$$

 $\therefore A > B$

4 E c > a > b

세 수가 모두 양수이므로

$$a^2 = 30 + 2\sqrt{209}$$

$$b^2 = 30 + 2\sqrt{200}$$

$$c^2 = 30 + 2\sqrt{216}$$

따라서
$$c^2 > a^2 > b^2$$
이므로

5 E
$$\frac{1}{a}$$
, $\frac{1}{\sqrt{a}}$, \sqrt{a} , a , a^2

$$0 < a < 1$$
이므로 $\sqrt{a} > a$, $a > a^2$

또한,
$$0 < \sqrt{a} < 1$$
이므로 $\sqrt{a} < \frac{1}{\sqrt{a}}$

$$\frac{1}{a} - \frac{1}{\sqrt{a}} = \frac{\sqrt{a} - a}{a\sqrt{a}} > 0$$
이므로 $\frac{1}{a} > \frac{1}{\sqrt{a}}$

$$\therefore \frac{1}{a} > \frac{1}{\sqrt{a}} > \sqrt{a} > a > a^2$$

따라서 큰 것부터 차례대로 나열하면

$$\frac{1}{a}$$
, $\frac{1}{\sqrt{a}}$, \sqrt{a} , a , $a^2 \circ \Gamma$.