Ⅱ_9. 연립일차부등식

- [10공수1-02-09] 미지수가 1개인 연립일차부등식을 풀 수 있다.
- A, B: 미지수가 1개인 연립일차부등식을 체계적으로 풀 수 있다.
- C, D: 미지수가 1개인 간단한 연립일차부등식을 풀 수 있다.
- E: 안내된 절차에 따라 미지수가 1개인 간단한 연립일차부등식을 풀 수 있다.

Ⅱ_10. 절댓값을 포함한 일차부등식

[10공수1-02-10] 절댓값을 포함한 일차부등식을 풀 수 있다.

A, B: 절댓값을 포함한 일차부등식을 체계적으로 풀 수 있다.

C, D: 한 개의 절댓값을 포함한 일차부등식을 풀 수 있다.

E: 안내된 절차에 따라 한 개의 절댓값을 포함한 일차부등식을 풀 수 있다.

Ⅱ_11. 이차부등식과 연립이차부등식

- [10공수1-02-11] 이차부등식과 이차함수를 연결하여 그 관계를 설명하고, 이차부등식과 연립이차부등식을 풀 수 있다.
- A, B: 이차부등식과 이차함수를 연결하여 그 관계를 설명하고, 이차부등식과 연립이차부등식을 체계적으로 풀 수 있다.
- C, D: 이차함수의 그래프를 이용하여 이차부등식과 연립이차부등식을 풀 수 있다.

E: 간단한 이차부등식을 풀 수 있다.

□ 부등식 ①

- (1) 부등식 : 부등호를 사용하여 수나 식의 값의 대소 관계를 나타낸 식을 '부등식'이라 한다.
- (2) 부등식의 기본 성질 : 실수 a, b, c에 대하여
 - ① a > b, $b > c \implies a > c$
 - ② $a > b \implies a + c > b + c, \ a c > b c$

(부등호 방향 그대로)

$$\textcircled{4} \ a > b, \ c < 0 \implies ac < bc, \ \frac{a}{c} < \frac{b}{c}$$

(부등호 방향 반대로)

□ 부등식 ❷

- 5 $a > b \Leftrightarrow a b > 0$, $a < b \Leftrightarrow a b < 0$
- ⑥ ① a와 b가 같은 부호 $\Leftrightarrow ab > 0$, $\frac{b}{a} > 0$, $\frac{a}{b} > 0$
 - ① a와 b가 다른 부호 $\Leftrightarrow ab < 0$, $\frac{b}{a} < 0$, $\frac{a}{b} < 0$

☆ 주의할 부등식의 성질

(1)
$$0 < a < b \implies a^2 < b^2, \frac{1}{a} > \frac{1}{b}, |a| < |b|$$

(2)
$$a < b < 0 \implies a^2 > b^2$$
, $\frac{1}{a} > \frac{1}{b}$, $|a| > |b|$

□ 부등식 ❸

(3) 부등식의 연산 : a, b, c, d가 양수이고

$$\begin{cases} a \le x \le b \\ c \le y \le d \end{cases}$$
 델 때,

- ① $a + c \le x + y \le b + d$ ② $a d \le x y \le b c$
- $\textcircled{3} \ a \times c \leq x \times y \leq b \times d \qquad \textcircled{4} \ \frac{a}{d} \leq \frac{x}{y} \leq \frac{b}{c}$

실제로 계산하거나 부등식의 영역을 이용한다.

② 연립부등식의 풀이 ❶

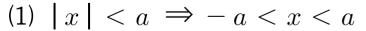
- (1) 부등식 ax > b의 풀이
 - ① $a > 0 \Rightarrow x > \frac{b}{a}$ ② $a < 0 \Rightarrow x < \frac{b}{a}$
 - ③ $a = 0 \Rightarrow \bigcirc b < 0 \Leftrightarrow x$ 는 모든 실수이다.
 - \bigcirc $b \ge 0 \Leftrightarrow 해가 없다.$
- (2) 연립부등식의 풀이
 - ① 각각의 부등식을 푼다.
 - ② 각 부등식의 해의 공통부분을 구한다.
 - ③ A < B < C인 꼴은 $\begin{cases} A < B \\ B < C \end{cases}$ 의 꼴로 고쳐서 푼다.

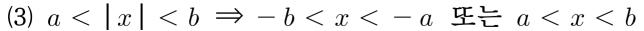
② 연립부등식의 풀이 ❷

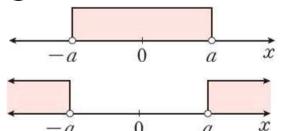
(3) 연립부등식 $\begin{cases} f(x) \ge 0 \\ a(x) > 0 \end{cases}$ 의 해가 $\alpha \le x < \beta$ $\Rightarrow \alpha$ 는 f(x) = 0의 근, β 는 g(x) = 0의 근이다.

☆ 절댓값 기호를 포함한 부등식 ❶

a > 0, b > 0일 때







☆ 절댓값 기호를 포함한 부등식 ❷

⇒ (절댓값 안) = 0 을 경계로 구간을 나누어 푼다.

- (1) |x-a| < k 또는 |x-a| < x+b $\Rightarrow ① : x < a, ② : x \ge a$
- (2) |x-a| + |x-b| < k $\Rightarrow ① : x < a, ② : a \le x < b, ③ : x \ge b$
- (3) 절댓값을 포함한 부등식의 특수해
 - ① $|x| < 0 \Rightarrow$ 해는 없다.
 - $2 |x| \le 0 \Rightarrow x = 0$
 - ③ $|x| > 0 \Rightarrow x$ 는 $x \neq 0$ 인 모든 실수
 - ④ $|x| \ge 0 \Rightarrow x$ 는 모든 실수

③ 이차함수의 그래프와 이차부등식의 해

이차방정식 $ax^2 + bx + c = 0$ (단, a > 0)의 판별식을 $D = b^2 - 4ac$, 두 실근을 α , β 라 하자.

$ax^2+bx+c=0$ 의 판별식 D	D>0	D=0	D < 0
y=ax²+bx+c의 그래프	α β x	$\overbrace{\qquad \qquad }_{\alpha }$	\overrightarrow{x}
$ax^2+bx+c>0의$ 해	$x < \alpha$ 또는 $x > \beta$	$x \neq \alpha$ 인 모든 실수	모든 실수
$ax^2+bx+c\ge 0$ 의 해	$x \le \alpha$ 또는 $x \ge \beta$	모든 실수	모든 실수
$ax^2+bx+c<0$ 의 해	$\alpha < x < \beta$	없다.	없다.
$ax^2+bx+c\leq 0$ 의 해	$\alpha \leq x \leq \beta$	$x=\alpha$	없다.

☆ 이차부등식 세우기

 $\alpha < \beta$ 인 실수 α , β 에 대하여

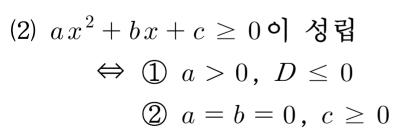
- (1) 해가 $\alpha < x < \beta \Leftrightarrow (x \alpha)(x \beta) < 0$
- (2) 해가 $x < \alpha$ 또는 $x > \beta \Leftrightarrow (x \alpha)(x \beta) > 0$

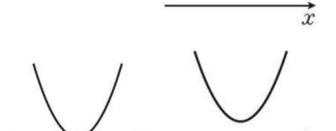
④ 항상 성립하는 이차부등식

 $D = b^2 - 4ac$ 라 할 때, 모든 실수 x에 대하여

(1)
$$ax^2 + bx + c > 0$$
이 성립 \Leftrightarrow ① $a > 0$, $D < 0$

②
$$a = b = 0$$
, $c > 0$





- (3) $ax^2 + bx + c < 0$ 이 성립 \Rightarrow 양변에 $\times (-1) \Rightarrow (1)$
- (4) $ax^2 + bx + c \le 0$ 이 성립 \Rightarrow 양변에 $\times (-1) \Rightarrow (2)$

5 두 함수의 그래프의 위치 관계와 부등식

이차함수 y = f(x)의 그래프와 직선 y = g(x)의 위치 관계와 부등식의 해가 다음과 같다.

위치 관계	$y = f(x)$ $y = g(x)$ α β	y = f(x) $y = g(x)$	y = f(x) $y = g(x)$
f(x) = g(x)	x=α 또는 x=β	$x=\alpha$	해가 없다.
f(x) > g(x)	x<α 또는 x>β	x≠α인 모든 실 수	모든 실수
f(x) < g(x)	$\alpha < x < \beta$	해가 없다.	해가 없다.

6 연립이차부등식

- (1) 연립이차부등식: 연립부등식에서 차수가 가장 높은 부등식이 이차부등식
- (2) 연립이차부등식의 풀이 : 연립부등식을 이루고 있는 각 부등식의 해를 구한 다음 이들의 공통부분을 구한다.

①
$$\begin{cases} f(x) > 0 \\ g(x) > 0 \end{cases} \iff \{x \mid f(x) > 0\} \cap \{x \mid g(x) > 0\}$$