
2. 지질 시대와 환경 01 지사학의 법칙

■ **지사학** : 지층과 암석에 기록된 지구의 역사를 연구하는 학문

스스로 생각해 보기(P.59)

스테노는 알프스의 지층에 석이 발견되는 것을 의아하 그러던 중 자신이 해부한 상

혓바닥 돌이라고 불렸던 화석과 매우 닮은 것을 발견하였고, 혓바닥 돌이 바다에 살았던 상어의 이빨 화석이라고 확신하였다.

소단원 학습목표

- 1. 지층의 선후 관계 해석에 사용되는 다양한 법칙을 설명할 수 있다.
- 2. 지사학의 법칙을 이용하여 지구의 역사를 추론할 수 있다.

스스로 생각해 보기(P.59)

바다에 사는 상어의 이빨이 어떻게 높은 산맥에서 발견되었을까?

→산맥이 만들어지기 전 해양에서 퇴적된 이빨이 대륙이 충돌하는 과정에서 산맥이 형성되면서 융기하여 산에서 발견되었다.

지사학의 법칙

➢ 동일 과정의 원리 (지사학의 기본 원리)현재 지각에서 발생하는 지질학적 사건들이

과거에도 동일하게 일어났다고 가정

지사학의 법칙 (P.60)

수평 퇴적의 법칙

- ✓ 현재 지층이 경사져 있더라도 과거 이 지층을 형성한 퇴적물은 수평으로 퇴적되었을 것
 - → 이 지역은 퇴적암 생성 후, 지각 변동으르 받아 경사진 것

지사학의 법칙 (P.60)

수평 퇴적의 법칙

거의 모든 퇴적층에서 퇴적물이 쌓일 때 수평으로 퇴적된다.

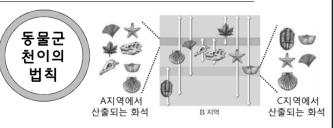
지사학의 법칙 (P.60)

지층 누중의 법칙 <u>지층의 역전이 일어나지</u> <u>않았다면,</u>

먼저 쌓인 지층이 나중에 쌓인 지층보다 아래에 위치한다. 이 법칙을 적용하기 위해서는 지층의 역전 여부를 먼저 판단해야 함

지사학의 법칙 (P.60)

지층 누중의 법칙



✓ 아래의 검은색 퇴적층이 먼저 퇴적된 것

지사학의 법칙 (P.60)

동물군 천이의 법칙 지층에서 발견되는 화석의 종류와 진화 정도에 따라 지층의 생성 순서를 밝힐 수 있다.

지사학의 법칙 (P.60)

- ✓ A지역의 지층은 B지역의 주황색 지층과 함께 퇴적
 C지역의 지층은 B지역의 파란색 지층과 함께 퇴적
- → A지층보다 C지층이 더 과거에 퇴적된 것

지사학의 법칙 (P.60)

관입의 법칙

관입당한 암석은 관입암보다 먼저 생성되었다.

지사학의 법칙 (P.60)

관입의 법칙

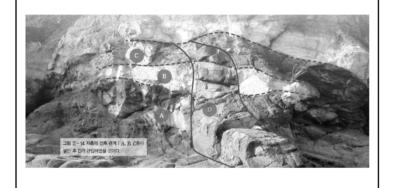
→ 층리가 발달한 지층이 먼저 생성된 후, 이 지층을 세로로 비스듬히 가로지르는 관입암이 생성된 것

지사학의 법칙 (P.60)

부정합의 법칙 부정합면을 기준으로 위아래 두 지층 사이에는 큰 시간 차이가 있다.

지사학의 법칙 (P.60)

부정합의 법칙



- ✓ A암석이 생성된 후, 지각 변동을 받음 이후 이 변성암은 융기하여 침식되고, 다시 침강하여 그 위에 B암석이 퇴적됨
- → A, B는 서로 인접하고 있지만 생성시기 사이에 긴 시간 간격이 있음

지층의 선후 관계 (P.59)

지층의 선후 관계 (P.59)

소단원 학습목표

- 1. 지층의 상대 연령과 절대 연령의 의미를 구분 하여 설명할 수 있다.
- 2. 절대 연령을 구하는 원리를 이해하고 자료를 이용하여 지층의 절대 연령을 구할 수 있다.

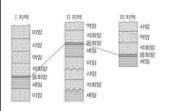
2. 지질 시대와 환경

02 암석과 지층의 나이

스스로 생각해 보기(P.62)

그림은 우리나라 대**이작도에서 볼 수 있는 마** 위이다. 대이작도에**는 우리나라에서 가장 오 래된** 암석이 분포하고 있으며, 이 바위도 그 중의 하나이다.

스스로 생각해 보기(P.62)


대이작도에 있는 암석이 가장 오래되었다는 사실을 어떻게 알 수 있을까?

→암석을 이루는 광물에 포함된 방사성 원소의 모원소와 자원소의 비율을 통해 절대 연령을 구하면 암석의 생성 시기를 알 수 있다.

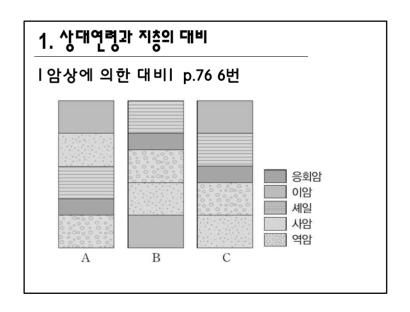
1. 상대연령과 지층의 대비

| 암상에 의한 대비|

지층을 구성하는 암석의 성분, 조직, 색, 퇴적 구조등을 조사하여 여러 지역의 지층들이 동일한 시기에 퇴적된 것인지 판단하는 방법

건층

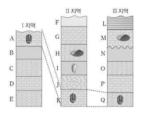
넓은 지역에 분포하여 지층 대비의 기준이 되는 층 → 주로 응회암층, 석탄층


1. 상대연령과 지층의 대비

상대 연령

지사학의 법칙을 이용하여 지층이나 암석의 생성시기와 지질학적 사건의 선후 관계를 나타낸 것

지층의 대비


암석층의 특징이나 화석을 이용하여 지층의 선후 관계를 결정하는 것

1. 상대연령과 지층의 대비

|화석에 의한 대비|

화석을 이용하여 지층의 선후 관계를 파악하는 방법

멀리 떨어진 지층에서 같은 종류의 화석이 발견되면 같은 시기에 생성된 것으로 판단할 수 있다.

2. 절대 연령

반감기

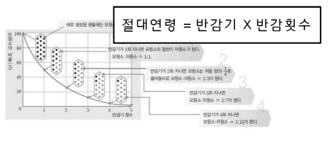
방사성 동위 원소(모원소)는 외부의 온도나 압력 조건에 관계없이 항상 일정한 비율로 붕괴하여 안정한 원소(자원소)로 변한다. 이때 방사성 동위 원소가 붕괴하여 처음 양의 절반으로 줄어드는 데 걸리는 시간을 반감기라고 한다.

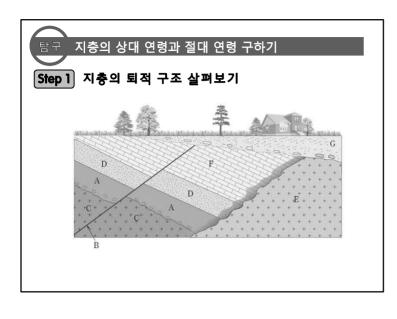
2. 절대 연령

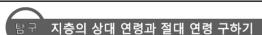
절대 연령

지층이나 암석의 정확한 생성 시기

방사성 동위 원소


자연 상태에서 불안정하기 때문에 스스로 붕괴하여 안정한 원소로 바뀌는 동위 원소


2. 절대 연령


반감기 모원소-자원소의 비율

암석의 절대 연령

▶ 절대 연령의 계산

Step 2 상대 연령 결정하기

- ② 단층 B와 지층 G의 선후 관계를 확인할 수 있는 방법을 설명해 보자.
- → 단층 B가 지층 G의 하부 경계선에 의해 잘리므로 단층 B가 더 먼저 생성되었다.

탐구 지층의 상대 연령과 절대 연령 구하기

Step 2 상대 연령 결정하기

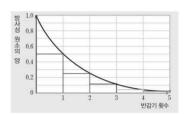
- ① 화성암 C의 조각이 지층 A 속으로 들어가게 된 과정을 설명해 보자.
- → 화성암 C가 형성된 후 지표에 노출되었고 풍화, 침식을 받아 부서진 C의 조각이 이후 A의 퇴적 과정에서 바닥에 남아서 함께 쌓이게 되었다.

탐구 지층의 상대 연령과 절대 연령 구하기

Step 2 상대 연령 결정하기

- ③ 화성암 E와 지층 F의 선후 관계를 확인할 수 있는 방법을 설명해 보자.
- → 화성암 E에 의해 지층 F가 변성된 흔적을 확인할 수 있으므로 지층 F가 더 먼저 생성되었다.

탐구 지층의 상대 연령과 절대 연령 구하기


Step 2 상대 연령 결정하기

- ④ 이 지역 지층과 지질 구조의 형성 순서를 오래된 것부터 순서대로 나열해 보자.
- → 화성암 C 부정합 A, D, F 퇴적 단층 B 형성과 화성암 E의 관입(이 둘의 순서는 모름) - 부정한 - G 퇴적

탐구 지층의 상대 연령과 절대 연령 구하기

Step 3 방사성 동위원소와 화성암의 절대연령 결정

이 지역의 화성암 C. E에는 방사성 동위원소 X가 들어있다. 방사성 동위원소 X의 반감기는 5000만 년이다.

탐구 지층의 상대 연령과 절대 연령 구하기

Step 3 방사성 동위원소와 화성암의 절대연령 결정

- ① 화성암 E에서 모원소와 자원소의 비율은 1:3이다. 다음과 같은 과정을 거쳐 화성암 E의 절대 연령을 구해 보자.
- 반감기가 1회 지나면 모원소의 절반이 자원소로 바 뀌므로 모원소 : 자원소 = 1:1 이 된다.
- 반감기가 한 번 더 지나면 남은 모원소의 절반이 다 시 자원소로 바뀐다.

탐구 지층의 상대 연령과 절대 연령 구하기

Step 3 방사성 동위원소와 화성암의 절대연령 결정

- 이때 모원소의 양은 처음의 25 %가 되고 자원소 는 75 %가 된다.
- 이때 모원소 : 자원소 = 1 1 : 3 이 된다.
- 현재 모원소 : 자원소 = 1 : 3 이므로 반감기가 2 번 지났다고 볼 수 있다.
- 따라서 화성암 E의 절대 연령은 1 억 년이다.

탐구 지층의 상대 연령과 절대 연령 구하기

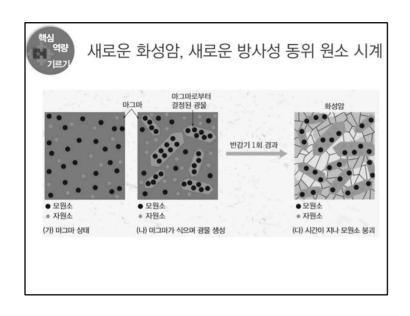
Step 3 방사성 동위원소와 화성암의 절대연령 결정

- ② 화성암 C에서 모원소와 자원소의 비율은 1:7이다. 이 화성암 C의 절대 연령은 얼마인지 계산해 보자.
- →반감기가 3회 지나면 모원소 : 자원소 = 1 : 7이 된다. 따라서 화성암 C의 절대 연령은 1.5억 년이다.

2. 절대 연령

방사성 동위 원소를 이용한 암석의 연대 측정 유의점

방사성 동위 원소 자료를 이용해 구한 절대 연령은 모든 암석의 생성 시기를 나타내지는 않는다.


탐구 지층의 상대 연령과 절대 연령 구하기

Step 4 퇴적암의 생성 시기 결정하기

- · 퇴적암 A, D, F가 생성된 시기는 어느 범위에 있는지 추론해 보자.
- →세 퇴적암 지층은 화성암 C보다는 이후에 퇴적되었고, 화성암 E보다는 먼저 퇴적되었으므로 1.5억 년에서 1억 년 사이에 퇴적되었다고 볼 수 있다.

2. 절대 연령

- → 화성암에서 측정한 절대 연령: 마그마에서 광물이 생성된 시기를 나타낸다.
- → 퇴적암에서 측정한 절대 연령: 퇴적암의 퇴적 시기 상한선을 지시한다.
- → 변성암에서 측정한 절대 연령: 변성암의 생성 시기 혹은 방사성 동위 원소 광 물이 변성 후 냉각된 시기를 나타낸다.

03 지질 시대와 환경

새로운 화성암, 새로운 방사성 동위 원소 시계

- 방사성 동위 원소를 이용하여 절대 연령을 구할 때, 지질학자들은 주로 U, Rb, K 등을 사용하고, 고고학자들은 주로 C를 이용한다. 그 까닭을 조사해보자.
- → 길지 않은 수 만 년 정도의 과거를 다루는 고고학에서는 방사성 탄소를 이용한 절대 연령 측정이 가능하다. 그러나 수 억 년의 시간을 다루는 경우에는 남아 있는 모원소의 양이 적어 사용이 불가능하다.

소단원 학습목표

- 1. 지질 시대를 기(紀) 수준에서 구분할 수 있다.
- 2. 화석 자료로 지질 시대의 생물과 기후 변화를 해석할 수 있다.

스스로 생각해 보기(P.67)

자연사 박물관을 찾았더니 그림과 같이 고생대의 바다를 재현하여 전시한 복원도를 볼 수 있었다. 지금의 바다에서는 거의 찾아볼 수 없는 독특한 모습의 생물들이 가득했다.

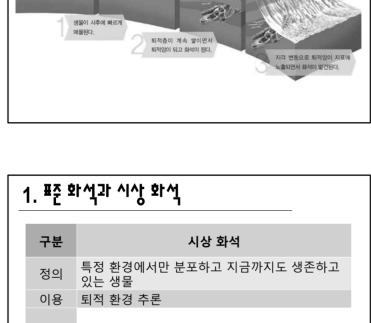
1. 표준 화석과 시상 화석

화석

- 지질 시대에 살았던 동식물의 유해나 생물이 활동한 흔적이 암석에 보존된 것
- 주로 퇴적암에서 발견된다.

스스로 생각해 보기(P.67)

과학자들은 어떻게 과거 생물이 살았던 환경을 유추할 수 있었을까?

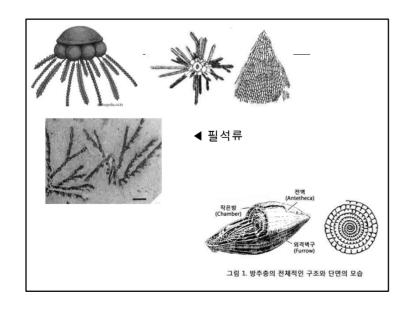

→퇴적암의 색, 퇴적물의 종류와 특징, 발견되는 퇴적 구조, 상하 퇴적층과의 관계, 산출되는 화석의 특징 등을 종합적으로 해석하여 생물이 살았던 환경을 유추하였다.

1. 표준 화석과 시상 화석

화석이 생성되는 조건

- 1) 생물체에 단단한 골격이 있으면 유리
- 2) 땅 속에 빨리 매몰될 것
- 3) 박테리아에 의한 분해를 겪지 않을 것
- 4) 퇴적암 생성 후, 심한 지각 변동이나 변성 작용을 받지 않을 것

예


1. 표준 화석과 시상 화석 구분 표준 화석 정의 지리적으로 넓게 분포하고 생존 시기가 짧았던 생물 이용 지층 대비, 지질 시대 결정

2. ^고(古) 기후 연구 방법 > 산소 동위 원소비 > P.69 탐구활동

3. 지질 시대의 환경과 생물 변화

지질 시대의 구분

현생(顯生)누대 은생(隱生)누대 시생누대 원생누대 현생누대 초 고 중 신 고 중 신 시 시 시 시 원 원 원 대 생 생 생 생 생 생 생 대 대 대 대 대 대 대 고생대 중생대 신생대 선캄브리아 시대 캄오실데석페 트 쥐 백 팔 네 제 브르루본탄름 라 라 악 레 오 4 리도리기기기 이 기 기 오 기 기 기 ᅡ아 기 아비아 . 스 기 기스기 기

