<통합과학 1학년 유인물-화학> 학번 : 이름:

1.금속 vs 비금속 특징

	금속 원소	비금속원소		
특징	전자를 잃고 양이온이 되기 쉬운 원소	전자를 얻어 음이온이 되기 쉬운 원소		
상태 비교 (실온)	실온에서 대부분 고체 상태로 존재함 단, 수은(Hg)은 액체 상태	실온에서 대부분 고체 또는 기체 상태로 존재함 단, 브로민(Br)은 액체 상태		
열과 전기 전도성	있음	없음		
성질	•광택이 있음 •외부에서 힘을 가하면 넓게 펴지거나 가늘게 뽑히는 성질이 있음(전성, 연성)	•광택이 없음 •다른 원소와 결합하여 여러 가지 물질을 만듦		
이용	예: 건물을 짓는 철(Fe), 난방 배관에 쓰이는 구 리(Cu), 호임을 만드는 데 쓰이는 알루미늄 (Al) ,주로 주기율표 왼쪽과 가운데 위치	예: 수돗물 소독에 쓰이는 염소(Cl), 식품 포장 에 쓰이는 질소(N), 풍선을 채우는 헬륨(He) ,주 로 주기율표 오른쪽 위치		

2. 주기율표 역사 (변천과정)

- ① 라부아지에 : 당시에 원소로 알려진 33종의 물질을 성질에 따라 다음과 같이 4가지 군으로 분 류학
- ② 되베라이너의 세쌍 원소: 화학적 성질에 따라 원소를 분류할 때 비슷한 성질의 원소들이 3개 씩 쌍을 이루는 경우가 있는데, 그는 실험을 통해 세 개의 원소로 이루어진 무리 중 어떤 원소들은 첫 번째 원소와 세 번째 원소의 물리량 평균이 두 번 째 원소와 같음을 확인함
- 예시) 칼슘-스트론튬-바륨, 염소-브로민-아이오딘, 리튬-나트륨-칼륨
- ③ 뉴랜즈의 옥타브 법칙 : 원소들은 원자량 순으로 배열하면 음악의 옥타브처럼 여덟 번째 원소마다 화학적 성질이 비슷한 원소가 나타나는 것을 발견, 당시에는 비활성 기체가 발견되지 않았기 때문에 옥타브 법칙 성립함.
- ④ 멘델레예프의 분류: 원소들은 원자량뿐만 아니라 성질도 함께 고려하여 배열함으로써 원소의 성질이 주기적으로 나타나는 것을 알 수 있도록 주기율표 만듦. 멘델레예프의 주기율표에서는 빈칸 이 있었으나, 새로운 원소가 발견될 것이라고 예측하고 원자량까지 예상함. 이는 주기율표에서 몇몇 원소가 원자번호는 크게 배열되지만 원자량은 오히려 작게 배열된다는 한계가 있음.
- ⑤ 모즐리의 주기율: 원자번호에 따라 배열. 모즐리는 X선을 이용하여 원소들을 분석한 결과 원소들을 원자번호 순으로 배열하면 멘델레예프의 주기율표에서 발생한 문제들을 해결할 수 있다는 것을 밝혀냄. 양성자를 발견하기 이전에 내린 결론이어서 원자 번호의 의미를 정확하게 결정하지 않은 한계가 있음.

- 3. 주기, 족 특징: 현대의 주기율표는 원소들을 원자 번호 순으로 배열하여 화학적 성질이 비슷한 원소들이 같은 세로줄에 오도록 배열한 것이다.
- ① 주기 : 주기율표의 가로줄로 $1\sim7$ 주기까지 존재하며, 같은 주기의 원소는 전자가 들어있는 전자 껍질수가 간다
- ② 족 : 주기율표의 세로줄로 $1\sim18$ 족 까지 존재하며, 같은 족에 속한 원소들은 원자가 전자수가 같아 화학적 성질이 비슷하다.

4. 원자가 전자수

- ① 원자가 전자: 가장 바깥 전자 껍질에 들어 있는 전자 중 화학 반응에 참여하여 하는 전자로, 워소의 화학적 성질을 결정한다.
- ex) 1,2족 원소, 13~17족 원소의 경우 원자가 전자 수는 족 번호 끝자리와 같다. (단, 18족 제외)

족	1	2	13	14	15	16	17	18
원자가 전자 수	1	2	3	4	5	6	7	0

- ② 원자의 전자 배치: 전자는 원자핵에 가까운 껍질부터 차례대로 배치된다. 각 전자 껍질에 최대로 배치될 수 있는 전자수는 정해져 있다. 첫 번째 전자껍질에는 최대 2개 두 번째 전자껍질부터 최대 8개가 배치된다
- * 전자껍질 : 전자가 운동하는 특정한 에너지를 갖는 궤도

(교과서 p.33 해보기 부분 전자배치 모형으로 표현하기 원자번호 1~20번까지 해보기)

5. 알칼리 금속

- -수수를 제외하 1족 금속 워수
- -리튬(Li), 나트륨(Na), 칼륨(K), 루비듐(Rb) 등
- -원자가 전자 수가 1
- -전자를 하나 잃고 +1가 양이온이 되기 쉬움
- -공통적 성질
- 가. 실온에서 모두 고체, 은백색 광택
- 나, 다른 금속들에 비해 밀도가 작고 칼로 잘릴 정도로 무름
- 다. 공기 중의 산소와 반응하여 광택을 잃음
- 라. 반응성 크기: Li<Na<K

구분	리튬(Li)	나트륨(Na)	칼륨(K)	
칼로 잘랐을 때 단면	광택이 서서히 사라짐	광택이 금방 사라짐	광택이 빠르게 사라짐	
물에 넣었을 때	물과 서서히 반응	물과 빠르게 반응	물과 격렬히 반응	

- 마. 반응성이 매우 커서 자연계에서 주로 화합물로 존재
- 바. 반응성이 크므로 물 및 산소와의 접촉을 막기 위해 석유나 파라핀 속에 보관
- 사. 물과 격렬하게 반응하여 수소 기체를 발생하고, 반응 후 수용액은 염기성을 띤다.

-이용

- 가, 리튬: 휴대전화 전지 등
- 나. 나트륨: 가로등, 터널 조명 등
- 다. 칼륨: 비료 등

6. 할로젠 원소

- -17족에 속하는 비금속 원소
- -플루오린(F), 염소(Cl), 브로민(Br), 아이오딘(I) 등
- -원자가 전자 수가 7
- -전자를 하나 얻어 -1가 음이온이 되기 쉬움
- -공통적 성질
- 가. 이원자분자로 존재(F₂, Cl₂, Br₂, I₂)
- 나. 반응성 크기: F₂ >Cl₂ >Br₂

원소	색 및 상태(실온)	나트륨과 반응	수소와 반응
플루오린	옅은 황색 기체	매우 격렬히 반응	매우 빠르게 반응
염소	황록색 기체	격렬히 반응	빠르게 반응
브로민	브로민 적갈색 액체		반응 잘함
아이오딘 흑자색 고체		반응함	반응함

- 다. 금속과 반응하여 염 생성
- 라. 수소와 반응하여 수소화합물을 생성
- 마. 할로젠의 수소화합물은 물에 녹아 산성을 보임

-이용

가. 플루오린: 충치예방용 치약 등 나. 염소: 수돗물 정수, 표백제 등

다. 아이오딘: 소독약 등

7. 비활성 기체

- -주기율표 18족에 속하는 원소
- -헬륨(He), 네온(Ne), 아르곤(Ar) 등
- -원자가전자 0개
- -화학적으로 안정함
- -다른 원소와 잘 반응하지 않음
- -다른 원소와 결합하지 않고 주로 원자 상태로 존재 (He, Ne, Ar 등)