학번 :_____

이름 : __

섬세한 세경쌤의 한 장에 개념노트

PART 주제	PART 10. 해수의 순환	
PART 목표	- 해수의 표층 순환과 심층 순환을 대기와 해양의 상호 작용의 과정으로 설명할 수 있다.	
	- 표층 순환과 심층 순환의 차이점을 이해하고 상호 관련성을 파악할 수 있다.	
소단원 주제	01. 대기 대순환과 해수의 표층 순환	
수업 학습 목표	- 대기 대순환의 발생 원인을 알고, 대기 대순환 모델을 구분할 수 있다.	
	- 대기 대순환과 해수의 표층 순환의 관계를 대기와 해양의 상호 작용으로 설명할 수 있다.	
	- 표층 해류의 영향으로 기후가 변화할 수 있음을 설명할 수 있다.	
	- 우리나라 주변 해류의 분포를 설명할 수 있다.	

수업 목차

오늘의 핵심 개념

PART 10. 해수의 순환

〈대기 대순환과 해수의 표층 순환〉

01. 대기 대순환과 해수의 표층 순환

- (1) 대기 대순환
- (2) 해수의 표층 순환
- (3) 표층 해류의 영향
- (4) 우리나라 주변 해류

♥군산중앙여자고등학교♥

장세경T

섬세한 세경쌤의 한 장에 개념노트

대기 대순환 대기 대순환 대기 대순환의 기본적 원인(A) (A)를 고려한 대기 대순환 형태 대기 대순환의 추가적 고려사항(B) (A+B)를 고려한 대기 대순환 형태 90°N [지구 자전 효과(전향력)] [위도 별 에너지 불균형] - 적도 : 에너지 **(과잉 / 부족)** - **북반구** 기준, 60°N 진행 방향의 (- 고위도 : 에너지 (**과잉 / 부족**))으로 - 에너지 수송량이 최대인 위도 물체의 이동 방향을 휘게 만드는 힘) 부근 - 남반구 기준, 30°N 진행 방향의 ()으로 태양 복사 에너지 흡수량 물체의 이동 방향을 휘게 만드는 힘 0° 에너지양(× 힘을 가한 방향 지구 복사 에너지 30°5 30°5 10⁴ cal 실제 이동 방향 60°5 60°5 cm² 90°N 60° 40° 30° 20° 10° 0° 90°\$ 90°5 (1) (2) 대기 대순환 해수의 표층 순환 단일 세포 순환 모델 3 세포 순환 모델(대기 대순환 모델) 표층 해류의 발생 원인 - 모델에 적용된 요소 - 모델에 적용된 요소 - 대기와 해양의 상호 작용: 대기 대순환에 따른 표층 해류 형성 ① 위도 별 에너지 불균형: (O/X) ① 위도 별 에너지 불균형 : (O/X) (주요 원인은 대기와 해양의 상호작용이지만 수륙 분포에 따라서 해류의 흐름이 변화하기도 함 → 난류와 한류의 형성) ② 지구 자전 효과(전향력): (O/X) ② 지구 자전 효과(전향력): (O/X) 북태평양 해류 북적도 해류 남적도 해류 남극 순환 해류 편서풍 (3) 44>

♥군산중앙여자고등학교♥

섬세한 세경쌤의 한 장에 개념노트

해수의 표층 순환

표층 순환과 환류

- ① 아열대 해역에 주로 형성
- ② 적도를 기준으로 서로 대칭
- 북반구 : (시계 / 반시계)
- 남반구 : (시계 / 반시계)

난류와 한류

- ① 난류: 열E (방출/흡수)
- 저 → 고위도로 이동하는 해류
- ② 한류: 열E (방출/흡수)
- 고 → 저위도로 이동하는 해류 80°S

※ 난류와 한류는 실제 온도가 높거나 낮은 해류를 의미하는 용어가 아님에 유의하자 !! (위도 변화와 열E 역할에 집중하자 !!)

표층 해류의 영향

해류에 따라 변화하는 기후 특성

- 영향을 받는 해류의 특성에 따라 독특한 기후가 형성되기도 함

뉴욕과 레이캬비크의 1월 평균 기온 비교

- 위도 : **(뉴욕 레이캬비크)**
- 기온 : **(뉴욕 레이캬비크)**
- → (**난류 / 한류** <u>)의 영향</u>으로 레이캬비크의 위치가 뉴욕의 위치보다 훨씬 고위도임에도 온도 ()

장세경T

〈5〉

(6)

우리나라 주변 해류

우리나라 주변 해류의 근원

- 난류:(
-) 해류
- 한류:(
-) 한류

황해의 주요 해류

- 황해 난류

동해의 주요 해류

- 동한 난료, 북한 한류
- 난류와 한류가 만나는 지점이 형성
- → 해당 지점에서 난류와 한류의 특성이 혼합

우리나라 주변 해류

난류와 한류의 특성

	난류	한류
열E	(방출 / 흡수)	(방출 / 흡수)
염분	(높다/낮다)	(높다/낮다)
용존 산소량	(많다 / 적다)	(많다 / 적다)
영양 염류량	(많다 / 적다)	(많다/적다)

조경 수역

- 난류와 한류가 만나는 지점에 형성 → 좋은 어장
- 동해의 경우, <u>조경 수역의 위치</u>가
- 여름철에는 (북상 / 남하)
- 겨울철에는 (북상 / 남하)

(7)

(8)