정답 및 풀이

□-3 여러 가지 방정식 P. 44-48

- 1. ④
 2. ④
 3. ④
 4. ⑤
 5. ③

 6. ①
 7. ⑥
 8. ③
 9. 5
 10. ①

 11. 2, 10
 12. 10
 13. ④
 14. ①
 15. -4

 16. 394
 17. 15
 18. ⑥
- 3 x^4+ax^2+b 가 이차식 $(x-1)(x-\sqrt{2})$ 로 나누어떨어지므로 x=1, $x=\sqrt{2}$ 는 사차방정식 $x^4+ax^2+b=0$ 의 근이다. $x=1,\ x=\sqrt{2}$ 를 $x^4+ax^2+b=0$ 에 각각 대입하면

$$a+b=-1$$
 , $2a+b=-4$
위의 두 식을 연립하여 풀면
$$a=-3 \ , \ b=2$$

$$x^4+ax^2+b=x^4-3x^2+2$$

$$=(x^2-1)(x^2-2)=0$$

$$\therefore x^2-1=0 \ \ \mbox{또는} \ x^2-2=0$$

$$\therefore x=\pm 1 \ , \ x=\pm \sqrt{2}$$

(i) t = -6일 때.

(ii) t = 4일 때,

따라서 구하는 네 근의 곱은 2 이다.

x²-3x+6=0의 판별식을 *D*라고 하면 D=9-24=-15<0

이므로 허근을 갖고, 근과 계수의 관계로부터 두 허근의 곱은 6이다.

 $x^{2}-3x-4=0$, (x+1)(x-4)=0

 $\therefore x = -1$ 또는 x = 4 (i), (ii)에서 주어진 방정식의 모든 허근의 곱은 6이 다.

- 5 $2x^3 + 5x^2 + (k+3)x + k = 0$ 에서 $(x+1)(2x^2 + 3x + k) = 0$ 주어진 방정식의 세 근이 음수가 되기 위해서는 $2x^2 + 3x + k = 0$ 의 두 근이 음수가 되어야 한다. $2x^2 + 3x + k = 0$ 의 두 근을 α , β 라고 하면 (i) $D = 9 8k \ge 0$ $\therefore k \le \frac{9}{8}$
 - (ii) $\alpha+\beta=-\frac{3}{2}<0$ (iii) $\alpha\beta=\frac{k}{2}>0$ $\therefore k>0$ 이상에서 $0< k \leq \frac{9}{8}$

 \bigcirc , \bigcirc 에 의해 정수 a의 개수는 6

- 6 $x^3 + (8-a)x^2 + (a^2 8a)x a^3 = 0$ 에서 $(x-a)(x^2 + 8x + a^2) = 0$ 방정식 $x^2 + 8x + a^2 = 0$ 은 서로 다른 두 실근을 가져야 하므로 판별식을 D라 할 때 $\frac{D}{4} = 16 a^2 > 0$ 따라서 -4 < a < 4 ······ ① 또한 x = a는 $x^2 + 8x + a^2 = 0$ 의 근이 아니어야 하므로 $2a^2 + 8a \neq 0$ 따라서 $a \neq 0$ 이고 $a \neq -4$ ······ ①

$$\Box. \ \omega^{4n} + (\omega + 1)^{4n} + 1 = 0$$
$$(\omega^3 \omega)^n + (-\omega^2)^{4n} + 1 = 0$$
$$\omega^{2n} + \omega^n + 1 = 0$$

(i)
$$n=3k\,(k=1,\,2,\,3,\,\,\cdots)$$
이면
$$\omega^{2n}=1,\,\,\omega^n=1\,$$
이므로
$$\omega^{2n}+\omega^n+1=3$$

(ii)
$$n=3k+1(k=0,\,1,\,2,\,\,\cdots)$$
이면
$$\omega^{2n}=\omega^{6k+2}=\omega^2,\,\,\omega^n=\omega^{3k+1}=\omega$$
이므로
$$\omega^{2n}+\omega^n+1=0$$

(iii)
$$n = 3k + 2(k = 0, 1, 2, \dots)$$
이면
$$\omega^{2n} = \omega^{6k+4} = \omega, \ \omega^n = \omega^{3k+2} = \omega^2$$
이므로
$$\omega^{2n} + \omega^n + 1 = 0$$

이상에서 $\omega^{4n} + (\omega + 1)^{4n} + 1 = 0$ 을 만족시키는 30 이하의 양의 정수 n의 개수는 30 - (30 이하의 3의 배수의 개수)= 20

이상에서 ㄱ, ㄴ, ㄷ 모두 옳다.

$$\left[x(x+3) + \frac{2\{(x+3) + x\}}{2}\right](x+1) = 108$$

$$(x^2 + 3x + 2x + 3)(x+1) = 108$$

$$x^3 + 6x^2 + 8x - 105 = 0$$

$$(x-3)(x^2 + 9x + 35) = 0$$

$$x^2 + 9x + 35 > 0$$
이므로
$$x = 3$$

9
$$\overline{PA}^2 = \overline{PB} \cdot \overline{PC}$$
 이므로
$$(2\sqrt{6}x)^2 = (x^2 - x + 4)(x^2 + x + 4)$$

$$x^4 - 17x^2 + 16 = 0 \,, \qquad (x^2 - 1)(x^2 - 16) = 0$$
 즉 $x^2 = 1, \ x^2 = 16$ 이므로
$$x = 1, \ x = 4 \ (\because x > 0)$$
 따라서 모든 x 의 값의 함은 5 이다.

10
$$f(-1)-a=f(1)-a=f(2)-a=0$$
이므로 $g(x)=f(x)-a$ 라 할 때 삼차식 $g(x)$ 는 $g(x)=2(x-2)(x-1)(x+1)=f(x)-a$ 이라 할 수 있다. $g(0)=5-a=4$ 이므로 $\therefore a=1$

14
$$\begin{cases} x^2 - xy = 2 \\ xy - y^2 = 6 \end{cases}$$
 ①
① $\times 3 - \mathbb{Q}$ 을 하면
 $3x^2 - 4xy + y^2 = 0$
 $(x - y)(3x - y) = 0$
 $\therefore y = x$ 또는 $y = 3x$
(i) $y = x$ 일 때, 해가 존재하지 않는다.
(ii) $y = 3x$ 일 때,
 $y = 3x$ 를 ①에 대입하면
 $x^2 = -1$

(i), (ii)
$$\Leftrightarrow |x|$$

 $\alpha\beta = -3$
15 $(x-a)(x+a)(x^2+5)+9$
 $= x^4 + (5-a^2)x^2 - 5a^2 + 9 \cdots$

 $\therefore x = i, y = 3i \quad \text{Y} = -i, y = -3i$

(5-a²)²-4(-5a²+9)
= a⁴+10a²-11=0
이어야 한다.
즉, a²=1이다.
①에 대입하면
$$x^4+4x^2+4=(x^2+2)^2$$
이다.
{ $P(x)+x$ }²= $(x^2+2)^2$ 이므로
 $P(x)=-x^2-x-2$ 이다.
따라서 $P(a^2)=P(1)=-4$ 이다.

가 와전제곱식이어야 하므로

 \overline{AD} , \overline{AC} , \overline{BC} , \overline{AB} 는 이 순서대로 네 개의 연속된 짝수이므로

$$\overline{AD} = 2n$$
, $\overline{AC} = 2n + 2$,

 $\overline{BC} = 2n + 4$, $\overline{AB} = 2n + 6$ (단, n은 자연수) 이라 하자.

 $\overline{\text{BD}} = x$, $\overline{\text{CD}} = y$ 라 하면 x + y = 2n + 4두 삼각형 ABD와 ACD는 직각삼각형이므로

$$(2n+6)^2 - x^2 = (2n+2)^2 - y^2$$
, $= x-y=8$

따라서
$$x=n+6, y=n-2$$

직각삼각형 ACD 에서

$$(2n+2)^2 = 4n^2 + (n-2)^2$$

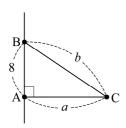
$$n^2 - 12n = 0$$
, $\stackrel{\triangle}{=} n = 12$

따라서 $\overline{\rm AB} = 30$, $\overline{\rm AC} = 26$ 이므로 두 원의 넓이의 합 S는

$$S = 15^2 \pi + 13^2 \pi = 394 \pi$$

그러므로
$$\frac{S}{\pi} = 394$$

17



직선도로 AB의 길이는

$$32 - 24 = 8 \text{ (km)}$$

직선도로 AC, BC의 길이를 각각 a, b 라고 하면

$$a + b = 32$$

....(7)

$$8^2 + a^2 = b^2$$

·····(L)

$$\bigcirc$$
에서 $64 = (b+a)(b-a)$

....(=)

①을 ©에 대입하면

$$b-a=2$$

····(2)

 $\bigcirc + \bigcirc \Rightarrow$ 하면 2b = 34

$$b = 17$$

b=17을 \bigcirc 에 대입하면 a=15

따라서 직선도로 AC의 길이는 15 km이다.

18 ㄱ. 삼차방정식 $x^3=1$ 의 한 허근이 ω 이므로

$$x^3 - 1 = (x - 1)(x^2 + x + 1) = 0$$
 에서

$$\omega^3 = 1, \ \omega^2 + \omega + 1 = 0$$

 ω 의 켤레복소수 $\overset{-}{\omega}$ 는 $x^3=1$ 의 다른 한 허근이므로

$$\overline{\omega^3} = 1$$
, $\overline{\omega^2} + \overline{\omega} + 1 = 0$, $\omega + \overline{\omega} = -1$, $\omega \overline{\omega} = 1$

$$\neg . \overline{\omega^3} = 1$$
 (참)

$$- \frac{1}{\omega} + \left(\frac{1}{\omega}\right)^2 = \frac{\omega + 1}{\omega^2} = \frac{-\omega^2}{\omega^2} = -1$$

$$\frac{1}{\overline{\omega}} + \left(\frac{1}{\overline{\omega}}\right)^2 = \frac{\overline{\omega} + 1}{\omega^2} = \frac{-\overline{\omega}^2}{\overline{\omega}^2} = -1$$

$$\therefore \frac{1}{\omega} + \left(\frac{1}{\omega}\right)^2 = \frac{1}{\overline{\omega}} + \left(\frac{1}{\overline{\omega}}\right)^2 \quad (참)$$

$$\Box. (-\omega - 1)^n = (\omega^2)^n$$

$$\left(\frac{\overline{\omega}}{\omega + \overline{\omega}}\right)^n = \left(-\overline{\omega}\right)^n = \left(-\frac{1}{\omega}\right)^n$$

$$= (-1)^n \times \left(\frac{1}{\omega}\right)^n = (-1)^n \times (\omega^2)^n$$

$$(-\omega-1)^n=\left(rac{\overline{\omega}}{\omega+\overline{\omega}}\right)^n$$
을 만족시키는 n 은

 $\left(\omega^2\right)^n=(-1)^n imes\left(\omega^2\right)^n, 1=(-1)^n$ 을 만족시키므로 n은 짝수이다.

그러므로 100 이하의 짝수 n 의 개수는 50(참) 따라서 옳은 것은 ㄱ, ㄴ, ㄷ

정답 및 풀이

Ⅱ-4 여러 가지 부등식

p.52-56

- 1. ② 2. ① 3. 4 4. ⑤ 5. ②

- 6. 22 7. 3 8. 4 9. 1 10. 2
- 11. (5) 12. (1) 13. (1) 14. (4) 15. 20
- 16. $3 \le k \le 6$ 17. (5) 18. 46 19. 6

- **3** 부등식 |x+1|+|x-2|<5에서
 - (i) x < -1일 때

$$-(x+1)-(x-2)<5$$

$$-x-1-x+2 < 5, \qquad -2x < 4$$

$$\therefore x > -2$$

그런데 x < -1이므로

$$-2 < x < -1$$

(ii) -1 ≤ x < 2일 때

$$(x+1)-(x-2)<5, = 0 \cdot x<2$$

따라서 부등식의 해는 모든 실수이다.

그런데 $-1 \le x < 2$ 이므로

$$-1 < x < 2$$

(iii) $x \ge 2$ 일 때

$$(x+1)+(x-2)<5, \qquad 2x<6$$

$$\therefore x < 3$$

그런데 x > 2이므로

$$2 \le x < 3$$

이상에서 부등식의 해는

$$-2 < x < 3$$

따라서 주어진 부등식을 만족시키는 정수 x는

$$-1, 0, 1, 2$$

의 4개이다.

4 ㄱ. 임의의 실수 x에 대하여 f(x) > q(x)이므로

$$x^2 - ax + b > ax + 2b$$

$$x^2 - 2ax - b > 0$$
 (참)

ㄴ. $x^2 - 2ax - b > 0$ 이 모든 실수 x에 대하여 성립하

므로
$$x^2 - 2ax - b = 0$$
의 판별식을 D 라 하면

$$\frac{D}{4} = a^2 + b < 0$$

$$b < -a^2 \le 0$$
 $\therefore b < 0$ (참)

$$\vdash$$
. $f(x) = x^2 - ax + b = \left(x - \frac{a}{2}\right)^2 - \frac{a^2}{4} + b$

함수 y = f(x)의 그래프의 꼭짓점의 y좌표는 $-\frac{a^2}{4} + b$ 이

고, 직선 y = g(x)의 y절편은 2b이므로

$$\left(-\frac{a^2}{4} + b\right) - 2b = -\frac{a^2}{4} - b$$

$$> -\frac{a^2}{4} + a^2 \ (\because \ b < -a^2)$$

$$=\frac{3}{4}a^2 \ge 0$$

$$-\frac{a^2}{4}+b>2b$$
이므로 함수 $y=f(x)$ 의 그래프의 꼭짓점

의 y좌표는 직선 y = q(x)의 y절편보다 크다. (참) 따라서 옳은 것은 ㄱ, ㄴ, ㄷ이다.

 $f\left(\frac{x+k}{2}\right) \le 0$ 에서 $\frac{x+k}{2} = t$ 로 놓으면 주어진 그래

프에서 $f(t) \le 0$ 을 만족시키는 t의 값의 범위가

$$-1 \le t \le 2$$
이므로

$$-1 \le \frac{x+k}{2} \le 2$$

$$-2 \le x + k \le 4$$

$$-2-k \le x \le 4-k$$

이때 부등식의 해가 -3 < x < 3이므로

$$-2-k=-3, 4-k=3$$

 $\therefore k = 1$

f(1) = f(11) = k이므로

$$f(x) = (x-1)(x-11) + k$$

$$=x^2-12x+11+k$$

$$f(x) < f(2) - 2$$
이므로

$$x^2 - 12x + 11 + k < -11 + k$$

$$x^2 - 12x + 22 < 0$$

$$\therefore 6 - \sqrt{14} < x < 6 + \sqrt{14}$$

따라서 $\alpha = 6 - \sqrt{14}$, $\beta = 6 + \sqrt{14}$ 이므로

$$\alpha\beta = 22$$

8 이차부등식 $(a+b)x^2 + (b+c)x + (c+a) > 0$ 의 해 가 1 < x < 2이므로 a+b < 0 주어진 부등식은 해가 1 < x < 2이고 x^2 의 계수가 1인 이차부등식인 $x^2 - 3x + 2 < 0$ 과 계수의 비가 같으므로

$$a+b=rac{b+c}{-3}=rac{c+a}{2}=k \ (k<0)$$
 라고 하면

$$a+b=k, \ b+c=-3k, \ c+a=2k$$

$$\therefore a = 3k, \ b = -2k, \ c = -k$$

따라서 $ax^2 + bx + c > 0$ 은 $3kx^2 - 2kx - k > 0$ 이고, 이때 k < 0이므로

$$3x^2 - 2x - 1 < 0$$
, $(3x+1)(x-1) < 0$
 $\therefore -\frac{1}{2} < x < 1$

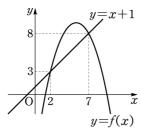
따라서
$$\alpha = -\frac{1}{3}$$
, $\beta = 1$ 이므로 $\alpha + \beta = \frac{2}{3}$

11 직선 y=x+1에서 y=3일 때

$$x = 2$$

$$y=8$$
일 때 $x=7$

직선 y = x + 1과 이차함수 y = f(x)의 그래프는 다음 그림과 같이 두 점 (2, 3), (7, 8)에서 만난다.



f(x)-x-1>0, 즉 f(x)>x+1의 해는 이차함수 y=f(x)의 그래프가 직선 y=x+1보다 위쪽에 있을 때의 x의 값의 범위와 같으므로

따라서 정수 x는 3, 4, 5, 6이므로 구하는 합은 18이 다.

12
$$x^2 - a^2x = x(x - a^2) \ge 0$$
에서 $x \le 0$ 또는 $x \ge a^2$ $x^2 - 4ax + 4a^2 - 1$ $= \{x - (2a - 1)\}\{x - (2a + 1)\} < 0$

에서 2a-1 < x < 2a+1

(i)
$$0 < a < \frac{1}{2}$$
 일 때

연립부등식의 해는

$$-1 < 2a - 1 < x \le 0$$
 또는 $a^2 \le x < 2a + 1 < 2$

$$0 < a^2 < \frac{1}{4}$$
이고 $1 < 2a + 1 < 2$ 이므로

x = 0, 1의 2개 정수해가 존재한다.

(ii)
$$a = \frac{1}{2}$$
일 때

연립부등식의 해는 $\frac{1}{4} = a^2 \le x < 2a + 1 = 2$ 이므로 x = 1의 1개 정수해가 존재한다.

(iii)
$$\frac{1}{2} < a < 1$$
일 때

연립부등식의 해는 $a^2 \le x < 2a + 1$

$$\frac{1}{4} < a^2 < 1$$
이고 $2 < 2a + 1 < 3$ 이므로

x = 1, 2의 2개 정수해가 존재한다.

(iv) a = 1일 때

연립부등식의 해는

$$1 = a^2 = 2a - 1 < x < 2a + 1 = 3$$

이므로 x=2의 1개 정수해가 존재한다.

$$(v)$$
 1 < $a < \sqrt{2}$ 일 때

연립부등식의 해는 $a^2 \le x < 2a + 1$

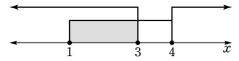
$$1 < a^2 < 2$$
이고

 $3 < 2a + 1 < 1 + 2\sqrt{2} < 4$ 이므로 x = 2, 3의 2개 정수 해가 존재한다.

(i)~(v)에 의하여 $a = \frac{1}{2}$ 또는 a = 1일 때, 1개 정수해가 존재한다.

따라서 모든 실수 a의 값의 합은 $\frac{3}{2}$ 이다.

14 부등식 $x^2 + ax + b \ge 0$ 과 $x^2 + cx + d \le 0$ 의 해를 수직선에 나타내면 다음 그림과 같다.



앞의 그림에서 $x^2 + ax + b \ge 0$ 의 해는

$$x \leq 3$$
 또는 $x \geq 4$

이므로

$$(x-3)(x-4) \ge 0$$

$$x^2 - 7x + 12 \ge 0$$

$$\therefore a = -7, b = 12$$

 $x^2 + cx + d \le 0$ 의 해는 $1 \le x \le 4$ 이므로

$$(x-1)(x-4) \le 0$$

$$x^2 - 5x + 4 \le 0$$

$$\therefore c = -5, d = 4$$

$$\therefore a+b+c+d=4$$

15 제2종 일반주거지역 건물의 건폐율은 60% 이하이므 로

$$\frac{5}{2}x(x-2) \le 60, \le x(x-2) \le 24 \text{ } \cdots$$

제2종 일반주거지역 건물의 용적률은 150% 이상 250% 이하이므로

$$150 \le 10x(x-2) \le 250, \stackrel{\sim}{\lnot}$$
 $15 \le x(x-2) \le 25$

①, 일에서 $15 \le x(x-2) \le 24$ 이므로

$$5 \le x \le 6$$

$$\therefore 15 \le 5x - 10 \le 20$$

따라서 가로의 길이의 최댓값은 20이다.

16 AB//DC이고 AB= DC이므로 □ABCD는 평행 사변형이다.

 \square ABCD의 밑변 AB의 길이는 k+1, 높이는 k이므로 넓이는 k(k+1)이다.

따라서 $12 \le k(k+1) \le 42$ 에서

 $\int 12 \le k(k+1)$

 $k(k+1) \le 42$

연립부등식을 풀면

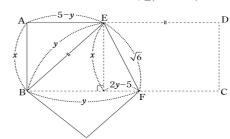
 $-7 \le k \le -4$ 또는 $3 \le k \le 6$

이때 k가 양수이므로 구하는 k의 값의 범위는 $3 \le k \le 6$ 이다.

17 $\overline{AB} = x$, $\overline{DE} = y$ 라고 하면 다음 그림에서

$$\begin{cases} x^2 = y^2 - (5 - y)^2 & \dots \\ x^2 = (\sqrt{6})^2 - (2y - 5)^2 & \dots \end{cases}$$

(단, x > 0, 0 < y < 5)



 \bigcirc - 나 을 하면 $4y^2 - 10y - 6 = 0$ (2y+1)(y-3) = 0

$$\therefore y = -\frac{1}{2} \quad \text{\sharp} \pm y = 3$$

그런데 0 < y < 5이므로 y = 3

y=3을 \bigcirc 에 대입하면 $x^2=5$

$$\therefore x = \sqrt{5} \ (\because x > 0)$$

18
$$ax^3 + 2bx^2 + 4bx + 8a$$

 $= a(x^3 + 8) + 2bx(x + 2)$
 $= a(x + 2)(x^2 - 2x + 4) + 2bx(x + 2)$
 $= (x + 2)\{ax^2 - 2(a - b)x + 4a\} = 0$
이차방정식 $ax^2 - 2(a - b)x + 4a = 0 (a \neq 0)$ 은 -2 가
아니고 정수인 서로 다른 두 근을 가져야 한다. 이때
근과 계수의 관계에 의하여 두 근의 곱이 $\frac{4a}{a} = 4$ 이므
로 가능한 서로 다른 두 근은
 $x = 1, x = 4$ 또는 $x = -1, x = -4$
따라서 근과 계수의 관계에 의하여 두 근의 합은
 $\frac{2(a - b)}{a} = 5$ 또는 $\frac{2(a - b)}{a} = -5$
이어야 하므로
 $b = -\frac{3}{a}$ 또는 $b = \frac{7}{a}$ $(a \neq 0)$

(i)
$$b=-\frac{3}{2}a$$
일 때

$$a = 32$$
이면 $b = -\frac{3}{2} \times 32 = -48$ 이므로

순서쌍 (a, b)는

$$(2, -3), (4, -6), \dots, (32, -48), (-2, 3), (-4, 6), \dots, (-32, 48)$$

의 32개이다.

(ii)
$$b = \frac{7}{2}a$$
일 때

$$a = 14$$
 이면 $b = \frac{7}{2} \times 14 = 49$ 이므로

조건을 만족시키는 순서쌍 (a, b)는

 $(2, 7), (4, 14), \cdots, (14, 49),$

$$(-2, -7), (-4, -14), \cdots,$$

(-14, -49)

의 14개이다.

(i), (ii)에 의해 조건을 만족하는 순서쌍 (a, b)의 개수는 32 + 14 = 46

19 $\beta - \alpha$ 가 자연수가 되기 위해서는 α, β 가 모두 정 수이거나 α, β 가 각각 정수가 아닌 실수이어야 한다. $\alpha \leq x \leq \beta$ 인 정수 x의 개수가 3이 되기 위해서 α, β 가 모두 정수인 경우에는 $\beta - \alpha = 2$ α, β 가 각각 정수가 아닌 실수인 경우에는 $\beta - \alpha = 3$ 이어야 한다.

$$\begin{array}{l} (1) \ \frac{1}{2}a^2-a>\frac{3}{2}a$$
인 경우
$$a^2-5a>0$$
이므로 $a<0$ 또는 $a>5$ 이다. 이차부등식 $(2x-a^2+2a)(2x-3a)\leq 0$ 의 해는
$$\frac{3}{2}a\leq x\leq \frac{1}{2}a^2-a$$
 이다.

(ii)
$$\alpha, \beta$$
가 각각 정수가 아닌 실수인 경우
$$\beta - \alpha = \left(\frac{1}{2}a^2 - a\right) - \frac{3}{2}a = \frac{1}{2}a^2 - \frac{5}{2}a = 3$$
 데므로
$$a^2 - 5a - 6 = 0$$
에서 $a = -1$ 또는 $a = 6$ 이다
$$a = -1$$
이면 β 와 α 가 각각 정수가 아닌 실수이다.
$$a = 6$$
이면 β 와 α 가 모두 정수이므로 조건을 만족하지 않는다. 따라서 $a = -1$ 이다.

$$\begin{array}{l} (1) \ \frac{1}{2}a^2-a<\frac{3}{2}a$$
인 경우
$$a^2-5a<0\, \mathrm{이므로}\ 0< a<5\ \mathrm{이다}. \\ \mathrm{이차부등식}\ (2x-a^2+2a)(2x-3a)\leq 0\ \mathrm{의}\ \mathrm{int}. \\ \\ \frac{1}{2}a^2-a\leq x\leq\frac{3}{2}a\ \mathrm{olr}. \end{array}$$

(i)
$$\alpha$$
, β 가 모두 정수인 경우
$$\beta - \alpha = \frac{3}{2}a - \left(\frac{1}{2}a^2 - a\right) = -\frac{1}{2}a^2 + \frac{5}{2}a = 2$$
이므로
$$a^2 - 5a + 4 = 0$$
에서 $a = 1$ 또는 $a = 4$ 이다.
$$a = 1$$
이면 β 와 α 가 각각 정수가 아니므로 조건을 만족하지 않는다.
$$a = 4$$
이면 β 와 α 가 모두 정수이다. 따라서 $a = 4$ 이다.

(ii) α, β 가 각각 정수가 아닌 실수인 경우

$$eta - lpha = rac{3}{2}a - \left(rac{1}{2}a^2 - a
ight) = -rac{1}{2}a^2 + rac{5}{2}a = 3$$
이므로

 $a^2 - 5a + 6 = 0$ 에서 a = 2 또는 a = 3 이다

a=2이면 β 와 α 가 모두 정수이므로 조건을 만족하지 않는다.

a=3이면 β 와 α 가 각각 정수가 아닌 실수이다. 따라서 a=3이다.

그러므로 (1), (2)에 의해 조건을 만족시키는 모든 실수 a의 값의 합은 -1+4+3=6이다.